Искусственное освещение в теплице
Что нужно для успешного выращивания растений в теплице зимой?
Основные факторы это конечно тепло, вода, и свет.
В данной статье мы рассмотрим насколько важен свет для растений, и каким он может быть в теплице кроме солнечного.
Для процесса фотосинтеза, в котором в природе помимо воды и углекислого газа участвует и солнечный свет необходимо достаточное количество всех составляющих процесса.
Солнце самый мощный источник света на земле, и заменить его полностью даже в отдельно взятой теплице пока не возможно.
Вот спектрограмма солнечного света с указанием длины волн в нанометрах.
Не весь солнечный свет воспринимается человеческим глазом и также не весь спектр солнечного света чувствителен растениями. Ниже приведена таблица необходимого для жизнедеятельности растений светового спектра
Избыточное, как и недостаточное количество света, пагубно отражается не только на здоровье человека, но и также вредит растениям
За миллионы лет эволюции растения научились приспосабливаться к солнечному свету, в разных широтах, в разных климатических зонах произрастают сотни тысяч видов растений.
Среди растений есть теневыносливые и светолюбивые.
Искусственным источником света в теплице могут служить разные светильники.
Рассмотрим несколько вариантов современных технологичных источников света способных частично заменить солнце растениям в теплице или зимнем саду.
1. Плазменный светильник для растений.
Пожалуй, самый прогрессивный на сегодняшний день искусственный источник света для растений.
Преимущества- самый широкий спектр, долговечность, высокая мощность
Недостатки – высокая стоимость.
2. Индукционные или другое название таких ламп — «безэлектродные»
Выдают спектр для успешного роста растений, долговечные, низкая рабочая температура. Относительно новая технология применяемая для искусственного освещения растений. Самое лучшее соотношение цены и качества, явный конкурент диодного освещения.
3. Светодиодное освещение самая популярная передовая технология на сегодняшний день.
Широко применяются в теплицах, зимних садах, оранжереях и просто на подоконнике. Экономичность, достаточно широкий световой спектр, возможность комбинировать количество диодов разных цветов и разного спектра позволяют решать практически любые задачи в период вегетативного роста, цветения и плодоношения. Самый большой недостаток диодных светильников на российском рынке это зачастую недобросовестные производители и продавцы, завышающие технические характеристики своей продукции, как по выдаваемой мощности, так и по ширине спектра.
4. Люминесцентные источники света.
Являются родственниками более технологичных индукционных источников света. Широко применяются для искусственного освещения растений. Используются в теплицах, зимних садах, оранжереях. Популярность завоевана относительно невысокой стоимостью и многообразием форм самих светильников. Достаточно приобрести лампу рекомендованную производителем для выращивания растений и подобрать к ней любой люминесцентный светильник. Недостаток быстрая потеря начальных характеристик, относительно короткий срок службы ламп. Спектр света будет уступать вышеперечисленным светильникам.
5. Натриевые лампы.
Проверенный временем источник света для растений в теплицах и зимних садах используемый в промышленных масштабах на протяжении десятилетий, однако, с приходом новых технологий постепенно сдает свои позиции, в основном используется консервативно настроенными растениеводами. Недостатки — большое количество выделяемого тепла и большое энергопотребление.
Мы рассказали о пяти основных источниках света применяемых для искусственного освещения в теплицах и зимних садах. Не стоит забывать, что для эффективного искусственного освещения в теплице необходимо помимо выбора самого источника света суметь равномерно и без потерь распределить подачу света на растения. Нужно учесть такие факторы как высота размещения источника света, его мощность, сорт растений и количество света необходимое именно этому растению. Также могут повлиять на светоотдачу и такие нюансы как рассеивающие линзы и светоотражатели светильников.
Некоторые агротехники успешно комбинируют различные источники света, достигая тем самым лучшего результата. Например, как основной искусственный источник света используется люминесцентный светильник, а в качестве вспомогательного используют диоды с подбором недостающего спектра. Подобрав правильную схему освещения в теплице можно увеличить урожайность до 40%.
Вы всегда можете обратиться к нам с вопросами по освещению в теплице.
Источник статьи: http://krasivieteplici.ru/articles/325009
Современная светотехника в цветочных теплицах
Прикупец Л. Б., к.т.н., завлаб. Всероссийского института (ВНИСИ) им. , ведущий консультант .
Промышленное цветоводство технологии светокультуры 10 лет сделало качественный скачок. Построено более десятка новых тепличных комбинатов высокотехнологичными теплицами общей площадью более 100 Га. году функционирует около 180 теплиц (ЦВТ) светокультуры, что, примерно ,25 раза превышает площади под светокультурой овощных растений. Сектор ЦВТ является одним энергоемких ( выражении) и, одновременно, самых энергоэффективных среди потребителей электрических световых приборов света. Уровни освещенности достигают 15 клк ( осветительных установках более чем ниже), суточный фотопериод может продолжаться часов «темные» месяцы года, продолжительность освещения составляет около 5000 часов, удельная установленная мощность находится 100–120 Вт/м2.
1. ОСВЕЩЕННОСТЬ
Уровень освещенности является одним элементов технологии светокультуры и, пожалуй, важнейшим параметром осветительной установки. Требования определяет агроном, обеспечивает поставщик светотехнического оборудования служба тепличного комбината эксплуатации.
1 приведены требования освещенности для основных видов цветочных культур, выращиваемых ЦВТ. Эти данные учитывают видовые особенности культур, своеобразными константами; они могут уточняться технологии светокультуры данных, позволяющих детального экономического анализа выбрать параметры искусственного освещения, обеспечивающие желаемый уровень рентабельности климатических условий ЦВТ.
Укажем, что для основной цветочной культуры , розы, отчетливо просматривается тенденция постепенного увеличения уровня освещенности. , построенных гг. она едва достигает 9 клк, затем был преодалён уровень 12 клк, сейчас проекты уже может закладываться уровень 15 клк. Весьма важным параметром искусственного климата является суточный фотопериод, который достигает 20 часов, случаях величины. Общая продолжительность искусственного освещения при светокультуре розы определяется климатом задачами достигать 5000 часов, цветок затрачивается *.
Уровень освещенности является исходным параметром для светотехнического расчёта осветительной установки ЦВТ, который для выбранного типа светового прибора выполняется, , DIALux. расчёта определяется распределение освещенности площади коэффициентом неравномерности расположения светильников конструкции теплицы ценоза. . 1 примера, приведено распределение освещенности компьютерного расчёта.
www.galad.ru «Тепличное») начал функционировать «калькулятор» для ориентировочного расчета осветительной установки при варьировании размера теплицы, уровня освещенности подвеса светильников. Выбрав тип светильника мощностью лампы кривой силы света пользователь может быстро получить необходимые расчётные данные (например, ориентировочное количество светильников, потребляемая мощность .д.) сформулировать техническое задание светотехникам для проектирования осветительной установки.
освещение использовалось лишь короткое время отделениях овощных теплиц, освещенности 6–7 клк.
светокультуры искусственное освещение используется, практически, всего периода вегетации месяцы обеспечивает % всей световой энергии, получаемой растением ( теплицах этот показатель может превысить 90%). «досветке» искусственным освещением может идти речь? Скорее наоборот, естественный свет является «досветкой»!
Исправляя эту терминологическую неточность, писать случае о «искусственном освещении при светокультуре растений».
Рис 2. Пример расчета калькулятора расчёта освещения теплиц, представленного www.galad.ru
Систему электрического освещения часто называют «системой досвечивания» или просто «досветкой». Эти термины существуют уже несколько десятилетий , когда искусственное
2. ИСТОЧНИКИ СВЕТА
Основные вопросы, связанные характеристиками натриевых ламп высокого давления (НЛВД), используемых , рассмотрены в [1]. , затронем некоторые дополнительные вопросы, связанные источников света (ламп).
Среди вопрос целесообразном сроке службы, требующем групповой замены ламп. Физический срок службы достигает 40 тыс.час, однако эксплуатации поток, определяющий меру эффективности, постепенно снижается. Как показали наши прямые испытания, проводимые PlantaStar 600W/400V ф. Озгат (Германия) (рис. 3), тыс. часам, что соответствует, примерно, 4 годам эксплуатации, величина спада достигает 20%. ЦВТ уровнем освещенности 12 клк это означает снижение ,6 клк.
Попробуем оценить, как это скажется продукции . Для этого воспользуемся «световой кривой» голландского происхождения, описывающей зависимость продуктивности освещенности при светокультуре розы (рис. 4). Кривая, конечно, может рассматриваться, как ориентировочная, имеющая «методическое» значение, поскольку, продуктивность зависит факторов и, числе, растения. Тем , вполне возможным использовать эту зависимость для количественных оценок влияния спада светового потока ламп и, соответственно, освещенности выхода цветка.
. 4 легко видеть, что снижение % освещенности уровня 12 клк 9,6 клк может привести выхода цветка /м2.
При средней оптовой цене цветка г. это приведет выручки Соответствующая оценка стоимости затрат 1600 ламп мощностью 600 Вт, обеспечивающих освещенность 12 клк, 2015 года составит: Сэ = 1600 руб =
Очевидно, своевременная замена ламп мощностью 600 4 -х лет эксплуатации обеспечит доход
Таким образом,4годаможетсчитаться экономически целесообразным сроком службы для НЛВД 600 , которого лампы следует заменить.
Вопрос замены ламп мощностью 1000 исследованиях. время данными светового потока ламп этого типа условиях. время, случае, ожидать заметных отличий светового потока для ламп 600 Вт. меньшего % необходимого количества ламп 1000 Вт, даже заметно более высокой стоимости этого источника света, сохраненная выручка при замене ламп после лет эксплуатации будет Га.
3. ИЗМЕРЕНИЯ ИЗЛУЧЕНИЯ
писали ранее [2], что , где используются только НЛВД, световые параметры (световой поток отдача) вполне характеризуют эффективность источника света. Тем , становится «модным» оперировать таким понятием как «микромоль». , презентациях, рекламных проспектах можно встретить такие числа как «, 105,220 .д. мкмоль». Что имеют авторы, можно только догадываться. Само слово «мкмоль» означает просто количество частиц , оно может характеризовать конкретный технологический процесс.
Использование понятия «мкмоль» означает введение новой метрологической фотонной фотосинтезной системы (ФФС) величин. Отметим, что стране ФФС , для измерений приборы измерений. Однако, использованием проектах «потенциальных носителей» светодиодных излучателей, измерение излучения которых световых величин невозможно, этой проблемой придется заниматься. Возвращаясь , приведенному выше, отметим, что авторы вероятно имеют фотонную фотосинтезную облученность, значение которой может быть записано «мкмоль/(м2*с)>>.
ФФС можно измерять излучение его светодиодных излучателей. . 2 излучательные параметры НЛВД системах: световой .
4. СВЕТИЛЬНИКИ
цветочных теплицах, , используются светильники мощностью 600 аппаратами (ПРА) отечественного производства. теплицах можно ещё встретить светильники мощностью 400 Вт, комбинатахуже используются светильники мощностью 1000 Вт.
комбинатов установлены светильники, выпускаемые заводом ОАО „КЭТЗ“ под брендом GALAD. Номенклатура тепличных светильников завода хорошо известна более 20 типов изделий НЛВД лампами ReFlux.
Среди новинок последнего времени светильник класса Premium ПРА РТд 1000/400 НЛВД PlantaStar 1000W фирмы Osram (Германия). г. было произведено более 25 тыс. шт. приборов этого типа.
г. начато производство нового светильника типа подключением. Этот светильник разработан меры, способствующей снижению зависимости импортных радиоэлементов повышенной надежностью, электронными ПРА.
Существует модификация этого светильника сплавным регулированием мощности потока.
. 5 фото новых светильников GALAD, . фрагмент осветительной установки комбинате „Мир цветов“ (Респ. Мордовия).
как теплицах, активно предлагается использовать светодиодные светильники. теплицах пилотных проектов проводятся эксперименты осветительными установками (НЛВД + светодиоды). Светодиодные облучатели спектром (рис. 7) линейных модулей длиной ,5 розы, создавая дополнительное боковое освещение.
Устойчивого эффекта позволяющего зафиксировать основные технологические параметры осветительной установки, обеспечивающие определенный положительный эффект, насколько нам известно, пока .
Что касается замены „верхних“ натриевых светильников , помимо традиционного ценового фактора, придется решать ещё несколько вопросов, раньше как-. 1. Светодиодный облучатель достаточно тяжелый световой прибор. Для соответствующих мощностей его вес превышает вес светильников ПРА. Количественные данные приведены . 8. Таким образом, желающим использовать светодиодные светильники необходимо быть готовыми нагрузке . 2. спектр светодиодных облучателей, сам , для зрения человека. Светотехники всего мира озабочены, так называемой, „синей угрозой“ белых светодиодных светильников, используемых для общего освещения, доля синего излучения раз меньше, чем светильниках. 3. Наконец, стоит подумать, насколько приемлемым для работы агронома, случае, окажется существенное искажение цветопередачи теплице.
Несмотря недостатки, придется считаться, светодиодные светильники , бесспорно, найдут свою нишу ЦВТ.
Список литературы: 1. . Свет . „Цветочные технологии“, № 18, 2011, стр. 12–15. 2. . Светокультура. Лампы светят. Когда менять?». Теплицы России, № 1, 2015, стр. 52–53.
Источник статьи: http://galad.ru/helpful/articles/748887/