Установка со2 для теплиц

Содержание
  1. Углекислый газ в теплице
  2. Подача СО2 в теплицы: когда и почему это необходимо
  3. Почему важно контролировать количество СО2 в теплицах?
  4. Современные датчики СО2
  5. Принцип действия приборов
  6. Виды датчиков
  7. Как выбрать датчики в теплицу?
  8. Система подачи углекислого газа и генератор СО2 для теплиц своими руками
  9. CO2 в теплице и гроубоксе или преимущество использования CO2 для растений
  10. Влияние углекислого газа на урожайность
  11. Как повысить концентрацию СО2?
  12. Открытый грунт
  13. Закрытый грунт
  14. Какое количество СО2 подавать растениям и в какое время?
  15. Со2 для теплицы и гроубокса. Способы подачи, преимущества использования со2 для растений.
  16. Пассивная диффузия
  17. Компенсация углерода, который удаляют с фермы во время сбора урожая
  18. Что нужно знать перед началом подачи Co2 в теплицу или гроубокс?
  19. 5 основных способов подачи СО 2 в домашних условиях.
  20. Способ 1. Сжигание топлива, такие как природный газ или пропан . Генератор углекислого газа
  21. Способ 2. Метод брожения
  22. Способ 3. Процесс разложения
  23. Способ 4. Подача сжатого углекислого газа из баллона
  24. Co2 для растений, какое количество подавать?
  25. В какое время подавать Со2 в теплице и гроубоксе?
  26. Несколько полезных советов. Как использовать Со2 с максимальной выгодой
  27. Подача СО2 в теплицу
  28. Генератор углекислого газа для организации фотосинтеза растений в теплицах
  29. Схема подведения CO2 в промышленных теплицах
  30. Отходящий газ котельных
  31. Распределительные сети из полиэтиленовых рукавов
  32. Система подведения и варианты подачи газа в небольших фермерских или домашних теплицах
  33. Газогенератор
  34. Газовые баллоны
  35. Датчик и регулятор газа
  36. Рукава и трубы ПВХ для подачи CO2
  37. Биологические источники
  38. Углекислый газ для огурцов из навоза
  39. Спиртовое брожение
  40. Питьевая газированная вода как источник углекислоты
  41. Естественные источники углекислого газа: воздух и почва
  42. Система подачи углекислого газа и генератор для теплиц своими руками: оправдано или нет
  43. Основные правила подачи
  44. Освещение
  45. Время подачи
  46. Определение объёма потребления углекислоты для каждой культуры в отдельности
  47. Система подачи углекислого газа и генератор СО2 для теплиц своими руками. Его контроль
  48. Зачем он нужен?
  49. Варианты подачи углекислого газа
  50. Технические средства в промышленных теплицах
  51. Небольшие фермерские или домашние теплицы
  52. Газовые баллоны
  53. Биологические средства
  54. Естественные источники
  55. Несколько правил подачи газа
  56. Углекислый газ для растений
  57. AquariumGuide.Ru
  58. Питьевая газированная вода как источник углекислоты
  59. Простейший способ подачи углекислого газа
  60. Углекислота жидкая (СО2, двуокись углерода, диоксид углерода)
  61. Углекислый газ своими руками для растений
  62. Несколько правил подачи газа
  63. Газовые баллоны
  64. Необходимость выработки углекислоты
  65. Допустимые уровни концентрации
  66. Способы доставки CO2
  67. Газированная вода
  68. Контроль системы подачи углекислого газа и генератора СО2 для теплиц. Сделать своими руками

Углекислый газ в теплице

Необходимость подавать углекислый газ в теплицу наглядно демонстрирует общая формула фотосинтеза:

6СО2 +6Н2О+энергия света=С6Н12О6 +6О2↑

Здесь видно, что глюкоза (основное органическое вещество, источник энергии для растений) образуется из углекислого газа и воды при участии энергии света. Получается, что СО2 служит одним из важнейших кирпичиков в обменных процессах.

Иногда можно услышать мнение, что СО2 в теплицу подавать не следует. Некоторые объясняют это тем, что углекислота выделяется как продукт распада и результат жизнедеятельности почвенных микроорганизмов, а другие – тем, что конструкция теплицы сама по себе не герметична, и нужные вещества поступают из атмосферного воздуха. Однако на практике оказывается, что эти утверждения могут быть справедливы только для частных домохозяйств, где не используются стерильные искусственные субстраты, а сами теплицы построены с нарушениями герметичности. В новых аграрных комплексах вполне реальна ситуация, когда содержание углекислого газа внутри теплицы в 4 раза меньше, чем в атмосфере, а это приводит к замедлению роста растений.

Подача СО2 в теплицы: когда и почему это необходимо

Растения в сухом остатке на 95% состоят из углерода, причем черпают его они из атмосферы. В каждом кубическом метре воздуха содержится 0,56 грамм диоксида углерода. Но растения способы усвоить в 4 раза больше. В стандартных условиях концентрация СО2 составляет 0,03-0,04% от общего объема воздуха. Агрохимики рекомендуют увеличивать концентрацию углекислого газа до 0,1-0,15%, то есть в 3-5 раз по сравнению с атмосферным воздухом. Особенно оправданно это в условиях усиленного рассеянного освещения, когда потребление СО2 возрастает многократно. Соответственно, это позволит увеличить концентрацию диоксида углерода до 0,2-0,6%, в результате чего существенно ускорится процесс фотосинтеза.

А это, в свою очередь, сокращает сроки созревания плодов на 7-12 дней в среднем. Также растет и урожайность – по статистике, в теплицах, где углекислый газ подается дополнительно, она на 15-40% выше (в зависимости от вида культур). Но не стоит допускать, чтобы концентрация СО2 превышала 0,6%, поскольку в этом случае рост культур может замедлиться. Соответственно, нужно знать, как увеличить содержание углекислого газа в теплице и что делать, если обнаружено повышенное СО2. Чтобы иметь возможность проконтролировать эти показатели в нужные моменты времени, устанавливают специальные датчики.

Почему важно контролировать количество СО2 в теплицах?

Подача углекислого газа в теплицу может осуществляться тремя способами:

  • Ввод отработанных газов из котельной;
  • Прямая газация путем установки плазменной горелки;
  • Установка газовой пушки или подача углекислоты напрямую из баллона.

Вот как можно получить углекислый газ в теплице. При подаче газа как отработанного продукта горения из котельных его нужно предварительно охладить. Однако вопрос чистоты поставляемой газовой смеси все равно остается открытым: побочные продукты, содержащиеся в ней, могут негативно влиять на температурный и влажностной режимы внутри теплицы. Также в смеси содержится угарный газ, а он опасен не только для человека, но и для растений.

Более безопасным считается использование баллонов с очищенным углекислым газом (чистота газовой смеси – 99,8%, вредных веществ в составе не содержится, по ГОСТ 8050-85). В этом случае можно организовать централизованную подачу углекислоты. В перечень необходимого оборудования в этом случае входят и приборы для измерения СО2 в теплице – контрольно-измерительная аппаратура, способная поддерживать необходимую концентрацию диоксида углерода и изменять ее при необходимости (величина будет отличаться для разных культур).

Современные датчики СО2

Системы подачи СО2 в теплицах позволяют обеспечить подачу газовой смеси, принимающей активное участие в фотосинтезе. Стабильное присутствие СО2 в нужной концентрации создает предпосылки для раннего стабильного цветения и увеличивает урожайность даже лучше, чем применение минеральных удобрений.

Контроль содержания СО2 в воздухе теплицы (то есть состояния и качества воздушной среды) обеспечивают специальные датчики. Они устанавливаются в разных тепличных хозяйствах, вне зависимости от сорта выращиваемых там культур.

Принцип действия приборов

Регулятор СО2 в теплице – это электронный прибор с энергонезависимой памятью, реле, которое будет срабатывать (включаться и выключаться) при заданных значениях. Устройство может интегрироваться в комплекс с промышленными увлажнителями и вентиляционной системой.

Датчик углекислого газа в теплице обеспечивает измерения концентрации в диапазоне от 0 до 2000ppm, а опционально – до 5000ppm или 10000ppm. Допустимая температура – до 50 градусов, влажность – до 95%, при этом появления конденсата допускать нельзя.

Сенсорный датчик углекислого газа в теплице работает по такому принципу: измеряется интенсивность инфракрасного излучения до и после поглощения углекислого газа, измеряется количество света, прошедшего через светофильтр и поглощенного углекислотой. Прибор высчитывает разницу между поглощенным потоком и прошедшим мимо оптического устройства.

Виды датчиков

Датчики углекислого газа СО2 в теплице выпускаются в виде стационарных (работающих от электрической сети) и автономных (с независимым источником питания) устройств, рассчитанных на настенных, напольный, настольный монтаж или непосредственно на установку в вентканал.

Устройства комплектуются корпусами из поликарбоната, отличающимися высокой ударопрочностью и химической устойчивостью.

Дисперсионные анализаторы используют одноволновое излучение, получаемое монохроматографом. Высокую стабильность измерений демонстрируют модели с недисперсионным инфракрасным методом детектирования (они обеспечивают точность вне зависимости от содержания кислорода в воздухе). Современные модели работают по методу NDIR (недисперсионной ИК-спектрометрии). Они высокочувствительны, отличаются продолжительным эксплуатационным периодом, не нуждаются в сложных настройках и выпускаются в современном дизайне. Однако следует помнить, что они чувствительны к пыли и влаге. Поэтому необходимо выбирать модели в пылевлагозащищенном корпусе IP65, а также правильно подбирать место установки.

Как выбрать датчики в теплицу?

Все измерительные приборы, устанавливаемые в теплицах, должны соответствовать особенностям климата (высокая влажность и повышенное содержание в воздухе загрязняющих веществ, в том числе гербицидов, удобрений).

Основными критериями выбора служат:

  • Высокая точность измерения, в пределах 30ppm;
  • Прочный, функциональный корпус, повышенная степень защиты его от попадания влаги и пыли;
  • Наличие реле;
  • Удобная световая и звуковая индикация для быстрого контроля и проверки работоспособности;
  • Наличие процедуры автокалибровки, компенсирующей старение инфракрасного источника;
  • Защелкивающийся монтажный фланец на корпусе для удобства установки.

Выбирайте профессиональные датчики, позволяющие контролировать СО2 в теплице. Эти измерители содержания углекислоты помогают регулировать подачу газа и соблюдать агротехнику. В каталоге компании Измеркон представлены высокоточные детекторы углекислого газа и канальные преобразователи концентрации СО2. В парниках это оборудование позволяет контролировать генератор подачи газа и повышать урожайность естественным способом.

Источник статьи: http://izmerkon.ru/podderzhka/publikaczii/uglekislyij-gaz-v-teplicze.html

Система подачи углекислого газа и генератор СО2 для теплиц своими руками

CO2 в теплице и гроубоксе или преимущество использования CO2 для растений

Всем еще с уроков биологии известно, как происходят процессы дыхания у растений. Человеческий организм устроен иначе, поэтому мы и прекрасно сосуществуем на нашей планете, зависят друг от друга.

Углекислый газ – это диоксид углерода, который в химии представлен формулой CO2. Это газ без запаха и цвета, незначительный процент которого содержится в воздухе. Именно он является источником чистого углерода для растений, который лежит в основе всех их процессов жизнедеятельности. СО2 играет очень важную роль в процессе фотосинтеза, давая возможность растительному организму производить энергию, необходимую для роста и развития. Без углекислого газа растения попросту погибнут, как человек без кислорода.

Влияние углекислого газа на урожайность

Если растениевод при выращивании растений использует умеренное по мощности освещение растений, то он может не беспокоиться, что его питомцам не хватит углекислого газа, содержащегося в воздухе. СО2 при установке мощных источников света будет недостаточно, чтобы культуры могли полностью поглотить и использовать получаемую световую энергию.

Давая растениям дополнительное количество углекислого газа совместно с мощным освещением, садовод помогает им поглощать больше света, что положительно сказывается на проведении процесса фотосинтеза. В результате они начинают быстрее расти, формировать более пышные соцветия и сочные плоды, которые содержат в себе значительно большее количество вкусоароматических веществ. В результате растениевод получает урожай не только немного раньше, но и в значительно большем количестве. Соцветия и плоды вырастают более сочными и объемными, что говорит об улучшении их качества.

Еще одна положительная сторона использования СО2 в теплицах и гроубоксах – представители флоры становятся более устойчивыми к повышенным температурам и световым ожогам. Они могут отлично себя чувствовать при показателях термометра в 30-35 градусов.

Как повысить концентрацию СО2?

Открытый грунт

Повысить уровень концентрации углекислого газа в воздухе в открытом грунте не так-то просто. Из-за свободного движения воздушных масс он быстро улетучивается с места высадки. Даже для незначительного поднятия процента его содержания садоводам потребуется большое количество газа и энергии, что станет попросту неоправданным. Его положительное влияние попросту сведется на нет. Однако есть все же один способ. Он подразумевает внесение в грунт органических удобрений, которые в процессе разложения выделяют углекислый газ. Это продолжается достаточно долго, что позволяет насытить приближенные к растениям слои воздуха СО2.

Закрытый грунт

В закрытом грунте дела обстоят совершенно иначе. Благодаря тому, что растения выращиваются в закрытом пространстве, повысить концентрацию углекислого газа в них достаточно просто. Сразу хотелось бы уточнить, что ценовая политика всех наиболее распространенных способов довольно широка, поэтому каждый гровер должен в первую очередь ориентироваться на свой кошелек. Также все будет зависеть от площади культивации и количества растущих культур.

Повысить уровень СО2 в теплице или гроубоксе можно следующими способами:

  • Генератор углекислого газа

Представляет собой специальное устройство, которое образовывает СО2 путем сжигания пропана и этилового спирта. Контроль над его работой осуществляется с помощью автоматики, представленной датчиком измерения концентрации углекислого газа. С его помощью можно легко поддерживать необходимый уровень СО2 в закрытом пространстве. Генератор больше подходит для больших теплиц, поскольку требует существенных финансовых вложений, часть из которых пойдет на дополнительное обустройство самого помещения, ведь должны быть соблюдены все меры безопасности. Также стоит отметить, что генератор повышает уровень влажности и температуры в замкнутом пространстве. Поэтому лучше всего устанавливать его за пределами теплицы;

  • Сжатый углекислый газ в баллонах

Это наиболее приемлемый способ насыщения теплиц и больших гроуромов СО2, однако цена на него все же является высокой для любительского садоводства. Только при солидных посевных площадях он полностью себя оправдывает. Садовод просто ставит баллон с газом в боксе или теплице, и откручивает кран, чтобы СО2 выходил наружу. Минус способа заключается в том, что без датчика концентрации углекислого газа гровер может легко перенасытить им замкнутое пространство, что отрицательно отразится на растительных культурах. Еще одни немаловажный фактор – баллон является взрывоопасным;

  • Ферментация или брожение

Больше подходит для насыщения углекислым газом небольших гроубоксов, поскольку в процессе вырабатывается малое количество СО2, которого хватит только для небольшого количества растений. В боксе размещаются специальные вещества, после чего активируется их процесс брожения, побочным продуктом которого является углекислый газ. Из недостатков ферментации стоит отметить тот факт, что растениевод должен уметь проводить и контролировать этот процесс. Также в брожения выделяется неприятный запах и это может привлечь насекомых;

Наиболее популярный среди гроверов способ, который не требует специальных знаний и умений. На рынке прогрессивного растениеводства востребован препарат СО2 Bottle. По сути – это обычная бутыль с сухим веществом органического происхождения внутри, которое при контакте с теплой водой начинает выделять углекислый газ. Большой плюс в том, что такого количества вполне достаточно для насыщения гроубокса. Препарат очень прост в использовании. После добавления воды садоводу нужно убрать специальный стикер, закрывающий выходное отверстие, и встряхнуть бутылку. Бутыль необходимо встряхивать один раз каждые два дня. Всего ее хватает на 3-4 недели, по окончанию ее можно легко наполнить новой порцией с помощью пакета для заправки СО2 Bottle. Данный способ обогащения гроубокса углекислым газом стал наиболее востребованным среди канадских и европейских гроверов благодаря своей простоте и дешевизне;

Обогатить воздух в теплице СО2 можно с помощью компостирования, однако этот метод приносит скорее больше хлопот, чем пользы. С самодельным компостом всегда трудно работать, а его результат неоднозначен – никогда не знаешь, сколько углекислого газа вырабатывается. Готовые СО2 бустеры можно приобрести на рынке, но они стоят недешево и вырабатывают слишком большое количество углекислого газа для домашней оранжереи. Также во время компостирования всегда возникает неприятный запах, а сам процесс является гигиеничным;

Представляет собой холодный твердый СО2, в процессе нагревания которого углекислый газ попадает в воздух. Он хорошо проявляет себя, если необходимо резко повысить концентрацию СО2 в закрытом помещении. При постоянном использовании является затратным и долгим способом, который также небезопасен для человека. Пополнять запасы льда придется каждый день, а уровень выделения углекислого газа довольно трудно контролировать.

Какое количество СО2 подавать растениям и в какое время?

Сотни тысяч лет назад концентрация углекислого газа в атмосфере нашей планеты была намного больше, чем сегодня. Поскольку в процессе эволюции растения приспособились к данным условиям, они способны поглощать существенно больше СО2, чем его сегодня находится в воздухе. По заверениям ученых, они могут эффективно использовать до 1500 ppm газа. А поскольку в атмосфере его концентрация сегодня достигает всего лишь 400 ppm, то эффект от повышения его дозировки весьма ощутим. Растения смогут производить гораздо больше энергии в процессе фотосинтеза, что положительно отразится на их росте и производительности – это факт.

Однако стоит понимать, что в первую очередь на эффективность процесса фотосинтеза влияет именно мощность света. Дело в том, что при низкой концентрации СО2 растительные культуры способны перерабатывать не всю поступающую им световую энергию. Поэтому, если Вы решили повысить контракцию углекислого газа в теплице или гроубоксе, то непременно стоит позаботиться о мощном освещении.

Опытные гроверы советуют поддерживать концентрацию углекислого газа в закрытом грунте на уровне в 1200-1500 ррm. Такой показатель является наиболее оптимальным. Однако он актуален только при использовании ДНаТ или LED светильников мощностью не менее 600 Вт на площади культивации в 1 м2. При меньшей освещенности его следует снизить. Также растениеводу следует понимать, что в ночное время, когда растение отдыхает, оно не поглощает углекислый газ. Это значит, что при выключенном свете нужда в его поступлении отпадает. Всегда следует отключать «обогатитель» СО2 на ночь.

Читайте также:  Газон нужно ли убирать скошенную траву с газона

Профессионалы рекомендуют обогащать гроубокс СО2 в следующих случаях:

Такой режим поможет гроверу сэкономить ресурс преобразователя СО2 и не повлияет на эффективность использования.

Работа TDS метра основана на электропроводности водной – электроды, погруженные в водную среду, создают между собой электрическое поле. Чистая дистиллированная вода сама по себе ток не проводит, образуют его растворенные в воде различные примеси и соединения.

Солемер или TDS метр – это стационарный малогабаритный прибор для измерения жесткости воды и процентного содержания в ней разного вида веществ.

Кокосовый субстрат, изготавливаемый из растертой в мелкую крошку кожуры и волокон кокосового ореха, − достаточно молодой материал.

Чтобы пересаженные цветы хорошо росли и развивались, их корням необходима влага и возможность дышать через земляную почву. Обычная земляная смесь представляет собой достаточно плотную субстанцию, плохо пропускающую живительную влагу и воздух к корням.

Керамзитовый дренажный материал или керамзит – это одна из разновидностей субстрата применяемая для укоренения черенков роз гвоздик и иных цветочных растений.

В прошлом веке ученые открыли вещества, влияющие на работу тех или иных функций растения. С помощью этих веществ, каждый садовод может повлиять на жизненный цикл растения, ускорить или замедлить его развитие. Подобные вещества называют стимуляторами роста.

Современные технологии позволяют контролировать развитие растений по воле человека. Еще в 20 веке ученые открыли фитогормоны, вещества, стимулирующие все процессы жизнедеятельности и контролирующие их протекание

При выращивании растений без солнечных лучей нужно сильно постараться, чтоб предоставить все необходимое. Ведь питается растение именно световыми лучами, без которых рост и развитие невозможно, грунт и удобрение играют второстепенную роль.

  • Интернет магазин ООО «АгроДом»
  • Страна: Россия
  • E-mail: [email protected]
  • Телефон: 8 (800) 555–42–84
  • Мы работаем: пн-пт 9:00–23:00; сб 10:00–19:00; вс 12:00-20:00

Узнайте первым о предстоящих акциях и скидках. Мы не рассылаем спам и не передаем email третьим лицам

Со2 для теплицы и гроубокса. Способы подачи, преимущества использования со2 для растений.

Знание этого чрезвычайно важно, потому что утверждение о том, что рост растений может быть ускорен за счет увеличения потребления CO2, верно.

Пассивная диффузия

После поглощения растением CO2 превращается в сахар, он используется в качестве строительного материала для роста растений. В конечном счете, этот углерод позволяет растениям увеличивать количество новых тканей и оставаться сильными.

Если уровень CO2 в растущей среде падает ниже примерно 250 ppm, растения прекращают расти.

Компенсация углерода, который удаляют с фермы во время сбора урожая

После того, как растение использует углерод от CO2 для создания растительных тканей, следующим шагом является сбор урожая. Каждый раз, когда вы собираете урожай, вы убираете углерод со своей фермы, тем самым вы удаляете [богатые углеродом] растительные ткани.

Чтобы поддерживать высокий уровень углерода в вашей ферме, растениеводы должны пополнять его с помощью CO2.

Что нужно знать перед началом подачи Co2 в теплицу или гроубокс?

5 основных способов подачи СО 2 в домашних условиях.

Способ 1. Сжигание топлива, такие как природный газ или пропан . Генератор углекислого газа

  • дополнительное выделение тепла;
  • повышает уровень влажности;
  • требует существенных финансовых вложений.

Способ 2. Метод брожения

  • сложный контроль подачи;
  • неконтролируемая скорость происходящей реакции в емкостях;
  • нестабильность подачи СО2;
  • частая дозаправка (обслуживание);
  • покупка необходимых компонентов, а также сложность регулирования подачи углекислого газа.

Способ 3. Процесс разложения

  • долгосрочная стоимость конечного продукта Со2;
  • неконтролируемая подача Со2;
  • бутылки необходимо встряхивать каждые два дня, в противном случае выделение углекислого газа значительно уменьшается.

Способ 4. Подача сжатого углекислого газа из баллона

Co2 для растений, какое количество подавать?

В какое время подавать Со2 в теплице и гроубоксе?

  • подачу углекислого газа необходимо включать спустя 30 минут после включения освещения.
  • отключение подачи газа необходимо сделать за 30 минут до выключения света

Несколько полезных советов. Как использовать Со2 с максимальной выгодой

Придерживаясь несложных советов вы избежите типичных ошибок начинающих гроверов:

  • Используйте светильники с воздушным охлаждением с защитным стеклом. Половина тепла будет удалена из источника света еще до того, как оно попадет в помещение, а герметичное стекло сведет к минимуму потерю СО2.
  • Используйте полноспектральный светильник с расширенным синим спектром. Синий спектр стимулирует выработку хлорофилла и стимулирует раскрытие устьиц на листьях.
  • Для хорошего движения воздуха используйте вентиляторы с механизмом поворота, такой вентилятор гарантировано создаст хорошее движение воздушной массы и вы точно не получите застоявшиеся мертвые зоны. Такие зоны могут образовывать паровой барьер на нижней поверхности листьев, который в свою очередь будет препятствовать попаданию углекислого газа в растение через его листья.
  • Применяйте рециркуляционные кондиционеры и осушители воздуха без выпуска воздуха наружу. Если вытяжные вентиляторы будут работать слишком часто, большая часть CO2 будет потрачена впустую.
  • Поддерживайте оптимальную температуру воздуха. Температура теплого воздуха ускоряет процесс фотосинтеза и поглощения CO2. Важно понимать, если температура становится слишком высокой, в таком случае устьице листа закрывается, растение таким образом сохраняет накопленную воду.
  • Удерживайте относительную влажность воздуха между 40-60%. В условиях низкой влажности устьица листа закрывается, потребление СО2 при этом снижается.
  • Увеличьте отношение аммония к нитрату в вашем удобрении. При высоких уровнях CO2 растения не будут ассимилировать столько нитратного азота, в то время как аммонийная форма азота будет использоваться более эффективно.
  • Используйте добавки, такие как гуминовая кислота. Гуминовые и фульвокислоты улучшают усвоение железа и других микроэлементов. Железо является катализатором для производства хлорофилла и способствует более эффективному фотосинтезу в условиях высокой концентрации CO2 .
  • Чтобы поддерживать уровень углекислого газа на оптимальном уровне, лучше всего его подавать однократной и большой дозой с более длительными промежутками, чем небольшой дозой но с более частыми включениями.

Если вам понравилась статья, то сделайте репост или поделитесь знаниями с вашими друзьями!

© Копирование представленных на данном сайте материалов разрешается только при наличии активной обратной ссылки.

Подача СО2 в теплицу

В связи с растущим спросом на продукты питания и овощи местного производства индустрия тепличного хозяйства быстро расширяется. Контролируемая среда в помещении может обеспечить растениям лучшие условия для выращивания, а концентрация CO2 оказывает положительное влияние на фотосинтез. О применении генераторов углекислого газа для теплиц и пойдёт речь в нашем материале.

Генератор углекислого газа для организации фотосинтеза растений в теплицах

В закрытых герметично теплицах растения обеспечены достаточным освещением, запасами воды и питательных элементов, но темпы их развития ограничены уровнем CO2 в воздухе помещения.

Углекислота необходима растениям в химических реакциях (фотосинтезе) для биосинтеза углеводов как основы питательных и скелетных компонентов клеток и тканей растений с целью обеспечения роста и развития. Газообмен при дыхании растений происходит через небольшие регулируемые отверстия, называемые устьицами.

Устьице находится либо на верхнем, либо на нижнем слое эпидермиса листа растения.

В земной атмосфере уровень диоксида углерода — 250÷450 ppm, а потребность различных видов растений составляет 700–800 ppm. В новых тепличных комплексах с хорошей герметизацией уровень CO2 внутри помещения в 4 раза меньше, чем в наружном воздухе, а это отрицательно сказывается на росте и развитии культур.

Причём с увеличением длительности и мощности искусственного освещения помещения потребность растений в CO2 возрастает в 2-3 раза. С помощью насыщения воздуха теплицы углекислотой рост культур и их урожайность повышаются на 20–40%.

Схема подведения CO2 в промышленных теплицах

Система подведения углекислого газа в коммерческих теплицах включает в себя газогенератор, вентилятор, устройство дозирования, газоанализатор и транспортные магистрали. Управление осуществляется с помощью компьютера.

Способы получения CO2:

  • технический СО2 из баллонов;
  • сжигание метана;
  • отработанный газ отопительных установок;
  • отработанный газ мини ТЭЦ.

Отходящий газ котельных

Наиболее распространённым методом обогащения CO2 тепличного помещения является сжигание ископаемого топлива. Используемые дымовые газы не должны содержать опасного количества вредных компонентов, поэтому чаще всего топливом для газогенераторов в теплицах является метан. При сжигании 1 м³ метана образуется приблизительно 1,8 кг CO2.

При использовании дымовых отходов сжигания горячие отходящие газы улавливаются и очищаются. После очистки отработанного газа методом каталитического обезвреживания с помощью катализаторов или скрубберов газо-воздушная смесь охлаждается в теплообменнике до 50°С и подводится по газомагистрали в теплицу в виде удобрения.

Однако такой метод подведения газа для удобрения растений может привести к загрязнению воздуха теплицы вредными примесями продуктов сгорания, ведь газоочистительные устройства очищают газовые отходы только на 50–75%. Следовательно, концентрация вредных веществ в закрытом помещении теплицы может превысить предельно допустимые нормы для растений и человека.

Непрерывный режим горения горелок в отопительных котельных обеспечить не удаётся из-за меняющейся температуры окружающего воздуха, поэтому и поступление отходов газа неравномерно. К тому же палладиевые катализаторы и скрубберы экономически затратные и повышают расходную часть по содержанию теплицы.

Распределительные сети из полиэтиленовых рукавов

В качестве распределительной системы газа внутри теплицы используется транспортная магистраль из полиэтиленовых труб. В точках отбора газа над каждой грядкой к ней присоединяются гибкие полиэтиленовые рукава диаметром 50 мм с равномерно расположенными отверстиями. Рукава равны длине грядок и протянуты вдоль них или под стеллажами. Образование конденсата внутри системы устраняют наклоном труб.

CO2 значительно тяжелее воздуха, поэтому очень важно, чтобы газ отводился снизу. Циркуляция воздуха с помощью горизонтальных вентиляторов или системы струйной вентиляции обеспечивает равномерное распределение, перемещая большие объёмы воздуха в теплице, когда верхние вентиляционные отверстия закрыты или вытяжные вентиляторы не работают.

Система подведения и варианты подачи газа в небольших фермерских или домашних теплицах

Для частных и малых фермерских хозяйств существуют более простые и менее затратные методы подачи газа с учётом площади парников, вида и количества выращиваемых культур.

Газогенератор

Генератор газа для небольших помещений основан на получении необходимой углекислоты из атмосферного воздуха. Производительность такого устройства — 0,5 кг/ч. Устройство снабжено фильтрами, что позволяет получать очищенный газ, а дозаторы обеспечивают поступление необходимых объёмов. Микроклиматические показатели теплицы при этом не изменяются.

Газовые баллоны

Газ из баллонов используют для малых площадей при нагнетании 8–10 кг/ч на каждые 100 м². Баллон должен быть оснащён регулятором давления (редуктором) и автоматическим клапаном для отключения подачи газа (соленоидом) — эти приспособления обезопасят подачу газа.

Ёмкость 1 баллона — 25 кг газа. При существенных расходах рациональнее применять изотермические резервуары различной ёмкости для сжиженного газа, которые можно пополнять при необходимости.

Датчик и регулятор газа

Подачу газа нужно контролировать и регулировать, чтобы обеспечить оптимальный баланс и хорошие условия выращивания, избежать дорогостоящей передозировки и обеспечить безопасность людей, ухаживающих за культурами и собирающих урожай.

Для контроля и измерения уровня CO2 в теплице обычно используются датчики с установкой заданного значения, например, 800 ppm. Когда датчик обнаруживает пониженный уровень, он активирует систему дозирования. Когда требуемый уровень CO2 достигнут, система управления отключит подачу CO2.

Датчики и регуляторы могут обеспечить срабатывание сигнализации при превышении допустимого уровня концентрации и включать аварийную систему проветривания. Сейчас на рынке популярны ИК-датчики CO2, разработанные по принципу двойного ИК-луча.

Рукава и трубы ПВХ для подачи CO2

Вопрос подачи газа в помещение сложности не представляет, и каждый решает его самостоятельно. Обычно система распределения состоит из магистрального газопровода из труб (ПВХ или полипропиленовых), пластиковых перфорированных рукавов малого диаметра (50 мм) и подключённых датчиков и контроллера климатических показателей.

Непосредственно к растениям газ поступает через отверстия в рукавах. Рукава за верёвку можно подвесить на любом уровне — на грядках для удобрения корневой системы, на стеллажах и шпалерах для подачи к листьям и точкам роста.

Это даёт возможность точно и экономично дозировать газ практически 100% концентрации в течение дня в нужную область выращивания. Нормы подачи регулируются в зависимости от климатических показателей и суточной, и сезонной динамики фотосинтеза.

Биологические источники

Если в хозяйстве есть животные, то, расположив теплицу через стенку от хлева и оборудовав приточно-вытяжной вентиляцией оба помещения, можно организовать обеспечение растений углекислым газом от дыхания животных, которые, в свою очередь, получат кислород от растений.

При этом баланс и объёмы газов, а также регулирование придётся определять опытным путём. Такой же способ доставки CO2 можно обеспечить от пивоваренных и винокуренных предприятий.

Углекислый газ для огурцов из навоза

Навоз и другие органические вещества не только обеспечивают растения питательными элементами, но и выделяют при ферментации углекислый газ, количество которого способно улучшить рост овощных культур. Это создаёт благоприятные условия воздушного питания как корневой системы, так и надземной части растений.

Навоз следует разводить водой в пропорции 1:3.

Наглядным примером служит история, произошедшая на рубеже ХIХ–ХХ веков в Тимирязевской академии, где в течение нескольких лет пытались вырастить в теплицах огурцы, но, несмотря на научный подход, успеха не добились. Тогда учёные решили обратиться к клинским огородникам, выращивающим завидные урожаи огурцов в своих теплицах.

Пригласили огородника из Клина и предложили вырастить огурцы для себя в теплице академии, но позволить использовать его технологию в дальнейшем. Хитрость состояла в том, что внутри помещения устанавливались ёмкости с разведённым навозом, а выделяемый углекислый газ при брожении удобрял огуречные растения.

Экспериментально было установлено, что при непрерывном удобрении углекислотой в течение дневных часов достигается максимальная (54%) величина прироста веса огурцов.

Спиртовое брожение

Спиртовое брожение, как и микробиологическое разложение, является способом получения углекислоты. Разместив среди растений бидоны с забродившим суслом, можно обеспечить насыщение воздуха углекислотой. Для брожения используют воду, сахар и дрожжи или падалицу и непригодные к употреблению фрукты и ягоды, зерно (пшеница, рожь).

Ещё один способ — применить брожение крапивы.

Для этого ёмкость на треть наполняют травой (свежей или сушёной) и заливают водой. Брожение длится две недели. Смесь ежедневно перемешивают для выхода CO2. Чтобы устранить неприятный запах, в смесь можно добавить валериану (1-2 ветки) или присыпать сверху пылью.

Перебродившую смесь используют в качестве жидкой прикормки. Для регулирования подачи используют специальные крышки (CО2Pro), которые легко прикручиваются на стандартные пластиковые бутылки.

Питьевая газированная вода как источник углекислоты

Обычная бутылка газированной воды — доступный, хотя и малоэффективный источник углекислоты. В 1 л газированной воды растворено примерно 6–8 г углекислого газа в зависимости от степени газованности.

Метод не позволяет точно определить концентрацию газа и рассчитать оптимальную дозировку, поэтому его можно рассматривать как экстренную меру повышения уровня CO2 в малых объёмах помещения. Ещё один способ использования газированной воды в качестве удобрения — насыщение углекислотой из баллонов воды для поливов.

Естественные источники углекислого газа: воздух и почва

Если теплица не оборудована системой подачи CO2, то атмосферный воздух является естественным источником CO2 для растений при регулярном проветривании помещения и открытых фрамугах. Но это обеспечивает только третью часть от суточной потребности.

Другой низко технологичный метод добавления CO2 — компостирование растительного материала и органики в теплице, что приводит не только к обогащению почвы макро- и микроэлементами, но и пополнению CO2 (до 20 кг/ч с 1 га).

Процесс компостирования производит углекислоту, но при этом выделяются и вредные газы, а также создаются условия размножения болезнетворных микроорганизмов и насекомых. Концентрацию CO2, генерируемого этим способом, трудно контролировать, и метод ненадёжен.

Система подачи углекислого газа и генератор для теплиц своими руками: оправдано или нет

Целесообразность изготовления газового генератора самостоятельно следует оценить исходя из своих финансовых и материальных возможностей и трудозатрат.

Кроме установки газогенератора в виде котла с большим выделением тепла, понадобится система доставки газа в помещение теплицы (газопровод), измерительная и контрольная аппаратура. Таким образом, изготовление системы самостоятельно возможно, но оценить её рациональность для малых площадей парников можно лишь с помощью математических расчётов.

Намного проще и дешевле изучить альтернативные источники углекислоты и способы их применения в условиях закрытого грунта. Например, система на сжиженном газе стоит около 2 млн руб., а если использовать газ из баллонов, то стоимость уменьшается в 10 раз.

Основные правила подачи

Дозировка и временные периоды насыщения воздуха теплицы CO2 зависят от сезона и времени суток, степени герметизации помещения, интенсивности освещённости и вида выращиваемых культур.

Освещение

В результате фотосинтеза растения получают углеводы для роста и развития, перерабатывая углекислый газ и воду при помощи энергии света. Эти 3 компонента важны для механизма открытия устьиц на поверхности листа и начала газообмена растений с внешней средой. При интенсивном освещении растения активнее потребляют CO2, и скорость фотосинтеза возрастает.

Читайте также:  Как правильно начать строить веранду

Концентрацию CO2 в помещении необходимо поддерживать на уровне 600–800 ppm. При интенсивном освещении температура в теплице повышается, и приходится открывать фрамуги для проветривания, поэтому концентрацию увеличивают до 1000–1500 ppm.

Расход CO2 при солнечном освещении составляет около 250 кг/га за световой день при закрытых форточках. При открытых форточках и ветреной погоде — 500–1000 кг/га. Зимой нормы удобрения газом снижают до 600 ppm, так как искусственный свет способствует ускорению фотосинтеза.

Время подачи

Добавка CO2 наиболее эффективна в период активного роста растения в течение светлого периода. Генерацию CO2 следует начинать утром через два часа после начала освещения и до достижения желаемого уровня концентрации (1 час). Затем генератор должен быть выключен. Уровень CO2 вернётся к уровню окружающей среды до наступления темноты.

Вторую добавку следует проводить за 2 часа до окончания светового дня и перехода растений в состояние сна — полученный углекислый газ будет эффективно усваиваться и перерабатываться ночью.

Определение объёма потребления углекислоты для каждой культуры в отдельности

Такие культуры, как баклажаны, огурцы, помидоры, стручковый перец, салат и другие, теперь регулярно выращивают в современных теплицах, где контролируются свет, вода, температура, питательные вещества и регулируются уровни углекислоты для создания условий, оптимально способствующих росту.

Увеличение концентрации с 400 до 1000 ppm может стимулировать скорость фотосинтеза растений и приводит к увеличению урожайности на 21–61% для цветов и овощей. Кроме того, подкормка углекислым газом даёт более ранние урожаи (на 7–12 дней) и улучшает способность растений противостоять болезням и вредителям.

Для закрытого грунта рекомендуют следующие уровни CO2 в воздухе (1000 ppm = 0,1%):

У разных растений требования к содержанию CO2 различны, и это тоже нужно учитывать.

По результатам исследований овощные культуры показали такие характеристики при удобрении углекислым газом:

Огурцы повышение урожайности и качества плодов на 25–30% при 1500–2000 ppm
Помидоры урожайность на 30% выше, созревание на 2 недели раньше при 1000 ppm
Баклажаны урожайность больше на 35%, созревание на 2 недели раньше при 1000–1500 ppm
Капуста урожайность на 40% больше при 800–1000 ppm
Клубника урожайность выше на 40%, созревание на 2 недели раньше, ягоды слаще при 1000–1500 ppm
Салат урожайность выше на 30–40%, раннее созревание при 1000–1500 ppm
Спаржа повышение урожайности на 30%, созревание на 2 недели раньше при 800–1200 ppm
Дыня урожайность выше на 70%, улучшение качества плодов при 800–1000 ppm

Цветочные культуры (диффенбахия, розы и хризантемы) показали при 1000 ppm раннее цветение и повышение его качества на 20%. Для зерновых повышение уровня CO2 до 600 ppm увеличивает урожайность риса, пшеницы, сои на 13%, кукурузы на 20%.

При выращивании грибов следует учитывать, что углекислый газ угнетает развитие грибницы, поэтому помещение нужно проветривать для снижения его концентрации.

Оценив важность фотосинтеза в физиологии растений и познакомившись с методами получения углекислоты, вы сможете правильно и своевременно обеспечить подкормку тепличных культур углекислым газом и получить высокие и качественные урожаи.

Система подачи углекислого газа и генератор СО2 для теплиц своими руками. Его контроль

Чтобы растения правильно развивались, им просто необходимо большое количество химических элементов. Именно для этого их постоянно подкармливают жидкими и твёрдыми удобрениями. С недавних пор большую популярность обрела подача углекислого газа растениям.

Углекислый газ для огурцов в теплице:

Зачем он нужен?

Кроме подкормки минеральными и органическими удобрениями, регулярных поливов и поддержания необходимой температуры, растения нуждаются в углекислоте. Многие фермеры расценивают её как удобрение. Углекислый газ принимает активное участие в фотосинтезе. Поэтому многие огородники устанавливают в теплицах систему подачи СО2. Присутствие углекислоты в теплице жизневажно, чтобы растения правильно развивались и давали большой урожай. Польза СО2:

  • Способствует активизации раннего и наиболее активного цветения, увеличению плодоношения;
  • Принимает участие в синтезе сухого вещества на 94%;
  • Помогает повысить стойкость растений к болезням и вредителям.

Варианты подачи углекислого газа

Если растения выращивают в открытом грунте либо в плёночных парниках, то они получают СО2 из атмосферы. В производственных парниках, чтобы насытить им воздух, применяют разные способы и устройства.

Технические средства в промышленных теплицах

В больших сельскохозяйственных предприятиях применяют отходящий газ котельных (дым). Перед подачей СО2 в парники, его очищают и остужают, и лишь потом им снабжаются грядки по системе газопровода. Оборудование состоит из:

  • Компрессора со встроенным вентилятором;
  • Дозатора;
  • Газопроводных распределительных сетей (полиэтиленовых рукавов с перфорацией, которые протянуты вдоль грядок).

Небольшие фермерские или домашние теплицы

Чтобы обеспечить углекислотой маленькие теплицы применяют газогенераторы, которые выделяют СО2 из атмосферы и закачивают его в парник. Производительность газа до 0,5 кг в час. Преимущества газогенератора:

  • Независим от внешних источников;
  • Вырабатывает совершенно чистый углекислый газ в необходимых объёмах;
  • Присутствует сенсорный дозатор;
  • Простое и недорогое обслуживание (необходимо заменить фильтры один раз в 6 месяцев);
  • Не оказывает влияния на температуру и уровень влажности в теплице.

Газовые баллоны

Также имеется возможность использовать сжиженный газ в баллонах. Для данного метода необходимо дополнительное оборудование, чтобы подогревать и регулировать подачу СО2, то есть снижать давление. Лишь с помощью таких приспособлений газ может безопасно поступать в теплицу.

Биологические средства

  • При наличии в хозяйстве животноводческой фермы, между ней и теплицей налаживают воздухообмен. У этих двух помещений должна быть общая стена, с верхним и нижним отверстиями. В них устанавливают вентиляторы малой мощности. В результате животным поступает кислород от растений, а те в свою очередь получают СО2;
  • В парнике на садовом участке в качестве удобрений применяют навоз, у которого при разложении происходит выделение углекислоты в необходимом объёме для всех культур;
  • Бочка с водой с десятком крупных стеблей крапивы тоже является природным источником СО2;
  • Также источником углекислоты станет спиртовая ферментация. Многие огородники оставляют рядом с растениями тару с бражкой. Но данный метод затратен и ненадёжен.

Естественные источники

  • Основной натуральный источник СО2 — воздух;
  • Для поступления углекислоты в парник достаточно просто открыть форточки;
  • Растения способны получить из почвы СО2, образованного в процессе разложения органических веществ, дыхания корневой системы и микроорганизмов.

Углекислый газ для растений:

Несколько правил подачи газа

К ним относятся:

  • Насколько хорошо растения будут усваивать углекислый газ целиком зависит от освещения. Так искусственное освещение способствует лучшему поглощению газа, в отличие от естественного. Поэтому зимой подкармливать газом необходимо меньше, чем в летнее время;
  • Немаловажным является и время подачи СО2. Первый раз подкармливают в утренние часы приблизительно спустя два часа после рассвета, самое лучшее время для хорошего усвоения газа. Второй раз подкармливают в вечерние часы, за два часа до заката;

Каждый огородник и фермер желает получить отличный урожай. Во время возведения теплиц обращают внимание на её термоизоляцию. В герметичную теплицу поступает мало воздуха, а также и СО2. А углекислота необходима для того, чтобы растения в теплицах нормально росли и плодоносили.

Углекислый газ для растений

25.01.2018

AquariumGuide.Ru

Периодическая подача углекислого газа в аквариум нужна потому, что в результате фильтрации и аэрации содержание СО2 в воде стремится к нулю.

А в таких условиях водоросли в рыбьем домике могут погибнуть. Систему (или генератор) газовой углекислоты можно создать своими руками в домашних условиях. Это не так уж и сложно.

Со школьной скамьи любому человеку известно, что углекислый газ — основа процесса фотосинтеза — усваивается растениями из окружающего воздуха. Благодаря этому, собственно, и происходит рост наземной флоры. И в природной водной среде концентрация СО2 достаточна для развития водных растений.

Такие же условия необходимо создать и в аквариуме, который представляет собой замкнутую ёмкость. Создание концентрации углекислоты в пределах от 3 до 7 миллиграмм на литр аквы — вот необходимое условие, при котором аквариумные растения чувствуют себя нормально. Для этого совсем не обязательно приобретать промышленные углекислотные системы.

Питьевая газированная вода как источник углекислоты

В обычной продаваемой повсюду газировке содержится значительная доза углекислоты (до 10000 миллиграмм на литр в сильно газированной воде).

После открывания бутылки достаточно много газа выходит моментально, но всё равно в напитке остаётся значительная его часть — до 1500 мг/литр.

Если по утрам вносить в аквариумную воду всего по 20 миллилитров газировки на 10 литров воды, то для водной флоры этого будет достаточно.

Простейший способ подачи углекислого газа

Основным элементом является сосуд (двухлитровая пластиковая бутылка, к примеру) с обыкновенной брагой. В бутылку засыпается сырьё для брожения:

Для предотвращения попадания сгустков смеси браги в аквариум к основной ёмкости можно привязать малую пластиковую бутылочку и присоединить ещё 2 трубки, чтобы газ и продукты брожения сначала попадали в малую ёмкость, а уже потом в аквариум.

Этот способ имеет существенные недостатки:

  • невозможность регулировки количества подаваемого в аквариумную воду углекислого газа и нестабильность его подачи;
  • малая продолжительность работы такой системы — до 2 недель.

Для изготовления работоспособного генератора газа с регулировкой подачи потребуется немного больше материалов и трудозатрат.

Принцип действия установки состоит в постепенной подаче лимонной кислоты из одного сосуда в другой, где находится пищевая сода. Кислота смешивается с содой, и выделяющийся в результате химической реакции СО2 поступает в аквариумный резервуар. Рассмотрим процесс изготовления по этапам работы.

Берут две одинаковые литровые пластиковые бутылки. В крышечках необходимо аккуратно просверлить сверлом по дереву по 2 отверстия для последующей установки трубочек (шлангов). Одна трубка с обратным клапаном соединяет ёмкость №1 с ёмкостью №2.

Во вторые отверстия крышечек вставляется трубка-тройник, одно ответвление которой тоже имеет обратный клапан. Шланги с обратными клапанами должны быть вставлены в ёмкость №2, а на центральное ответвление тройника устанавливается небольшой краник для регулировки потока.

В бутылку №1 заливается водный раствор соды (60 г соды на 100 г воды), а бутылку №2 — раствор лимонной кислоты (50 г кислоты на 100 г воды). Крышечки с трубками должны быть плотно навинчены на бутылки.

Все стыки и отверстия необходимо надёжно загерметизировать смолой или силиконом во избежание утечки газа. Концы первого шланга должны быть опущены в растворы, а левую и правую трубочки тройника необходимо установить выше уровня растворов — через них будет проходить СО2.

Для запуска процесса генерации газа нужно надавить на бутылку №2 (с лимонной кислотой). Кислота через первый шланг поступает в раствор соды, и происходит реакция с выделением углекислого газа. Обратный клапан патрубка не позволяет раствору соды под давлением попадать в ёмкость №2.

Выделяющийся газ проходит по двум направлениям:

  • в бутылку с лимонной кислотой, создавая давление для непрерывной генерации,
  • в центральный патрубок тройника, по которому СО2 поступает в аквариум.

С помощью краника можно регулировать газовый поток. Если вместо самодельного тройника использовать шланги от медицинской капельницы, то дополнительно появится счётчик пузырьков газа, что очень удобно для создания точной концентрации СО2 в аквариумной воде.

Существуют также способы подачи СО2 от специальных газовых баллонов или с использованием огнетушителей. Отдельные умельцы реализуют такие методы.

Питание водной флоры углекислым газом является залогом их нормального роста и жизни. Для обеспечения этого процесса в домашних условиях достаточно минимум подручного материала, немного настойчивости и совсем небольшие финансовые затраты.

Углекислота жидкая (СО2, двуокись углерода, диоксид углерода)

  • Углекислота жидкая — это, сжиженный углекислый газ под очень высоким давлением, которое обычно равно 70 атмосферам. Жидкость, как и газ, абсолютно бесцветна, имеет слегка кислый привкус.
  • Поставляется и хранится углекислота в:
    • 40-литровых герметичных баллонах, которые защищены от коррозийных разрушений — срок хранения 2 года.
    • В транспортной бочке ЦЖУ-18 — срок хранения 6 месяцев.
  • Изготавливается в соответствии с ГОСТ 8050-50 «Двуокись углерода»
  • Чтобы узнать цены и сроки поставки нажмите подробнее.

Значение подкормки растений углекислым газом

Рост растений основан на процессе фотосинтеза.
Листья растений на свету с помощью хлорофилла поглощают углекислоту (углекислый газ, СО2) воздуха и вместе с водой перерабатывают ее в органические вещества.
Процесс фотосинтеза можно схематически изобразить так: углекислота + вода + свет = органическое вещество + кислород + вода.

В среднем, растение синтезирует из воды и углекислого газа 94% массы сухого вещества, остальные 6% растение получает из минеральных удобрений.
С повышением освещенности растений, фотосинтез, а значит и рост растений ускоряются. Одновременно, с ускорением фотосинтеза, увеличивается потребление углекислоты.
Для осуществления фотосинтеза растениям необходимы большие количества воздуха, так как атмосферный воздух содержит всего лишь 0,03% углекислого газа, что недостаточно для оптимального роста растений. При выращивании растений в теплицах низкое содержание углекислого газа является фактором, ограничивающим урожайность.
Установлено, что овощные растения на 100 м2 открытой площади ежечасно потребляют из атмосферного воздуха до 350 г углекислого газа, для этого им требуется не менее 500 м3 свежего воздуха в час, что в холодное время года невыполнимо из-за больших потерь тепла при проветривании теплицы.
При недостаточном воздухообмене, содержание СО2 в теплицах в результате его интенсивного поглощения растениями может упасть ниже 0,01% и фотосинтез практически прекращается.
Но даже и при проветривании теплицы содержания углекислого газа в ее воздухе будет недостаточно, так как для оптимального роста растений концентрация СО2 в воздухе теплицы должна быть больше, чем существующая концентрация СО2 в атмосферном воздухе.
Недостаток СО2 становится основным из факторов ограничивающих рост и развитие растений.
Дефицит СО2 является более серьёзной проблемой, чем дефицит элементов минерального питания.
По нормам технологического проектирования теплиц НТП 10-95 рекомендуемая концентрация СО2 в воздухе для томатов 0,13-0,15%, для огурцов 0,15-0,18%. Из практики оптимальным считается содержание СО2 у редиса 0,1-0,2%, капусты и моркови — 0,2-0,3%, огурца — 0,3-0,6%.
Подкормки СО2 играют очень важную роль в управлении вегетативным и генеративным балансом растения. Повышение активности фотосинтеза углекислотой стимулирует развитие растений. При этом до корневой системы доходит значительно больше питательных веществ, поэтому усиливается рост молодых корней, активизируется поглощение элементов минерального питания, повышается устойчивость растения к неблагоприятным факторам среды.
При добавлении углекислоты в воздух и повышении в нем ее концентрации можно повысить интенсивность фотосинтеза в 1,5-3 раза. На этом основан прием агротехники в условиях закрытого грунта — воздушное удобрение растение подкормкой углекислотой. Дозируя углекислый газ, можно эффективно добиться сокращения продолжительности вегетативной фазы развития растения, что обеспечит получение раннего, самого дорогого урожая овощей. При достаточной обеспеченности элементами минерального питания, эти подкормки всегда повышают общую урожайность этих культур на 15-40%, увеличивая количество и массу плодов, и ускоряют их созревание на 5-8 дней.
Прирост биомассы зеленых культур при подкормках СО2 существенно увеличивается. К примеру, урожайность салата повышается на 40%, созревание ускоряется на 10-15 дней. Подкормка цветочных культур в теплицах также высокоэффективна, поскольку значительно повышает качество, выход продукции увеличивается до 30%.
За счёт увеличения содержания углекислого газа в воздухе теплицы можно добиться снижения содержания нитратов в овощах, выращиваемых в зимнее время. Повышенная концентрация СО2 частично компенсирует недостаток освещённости зимой и при уменьшении светопропускания кровли теплицы, а также способствует более эффективному использованию света ранним утром.
К примеру, недостаток солнечной радиации зимой, который часто приводит к потере первых соцветий у томата, возможно успешно компенсировать увеличением концентрации СО2 до 0,1%. Такой технологический приём увеличивает интенсивность фотосинтеза, способствует более высокой интенсивности выведения ассимилятов из листьев, тем самым восстанавливая завязывание плодов.
В осеннем обороте подкормки углекислым газом являются основным резервом повышения урожайности овощных культур, в первую очередь томата. Ведение светокультуры вообще немыслимо без постоянных подкормок углекислым газом.
Многочисленные опыты показывают, что при подкормке углекислотой вес зелени и плодов увеличивается: у огурцов на 74-103%, у бобов на 112%, у томатов до 124%.
В опытах с сахарной свеклой вес корня увеличился на 19-57%, вес ботвы уменьшился. В других опытах, урожай редиса увеличился на 33-77%, фасоли 17-82%.
Овощи поразному реагируют на подкормку углекислотой. Огурцы требуют наибольшей подкормки, томатам и фасоли достаточно меньшей концентрации СО2. Продолжительность подкормки является фактором, улучшающим возможности прироста урожая. При повторении опытов с подкормкой огурцов в течение 3 месяцев урожай увеличился на 55%.
Количество расходуемой углекислоты должно быть пропорционально площади теплицы. Чем меньше расход углекислоты на единицу площади теплицы, тем хуже результаты по приросту урожая и наоборот.
Полностью покрыть дефицит СО2 в воздухе возможно только за счёт использования технических источников углекислого газа.
В настоящее время существуют три основных группы промышленных технологий подкормки растений в остеклённых и плёночных теплицах, использующие технические источники углекислого газа: прямая газация при помощи пламенных горелок, нагнетание отходящих газов котельной, подача чистого углекислого газа.
Для объективного сравнения этих технологий между собой, необходимо рассмотреть эти инженерные решения.

Прямая газация при помощи пламенных горелок

Нагнетание отходящих газов котельной

Подача привозной жидкой углекислоты

Подача к растениям в теплице чистого углекислого газа, распределяемого по системе пластиковых рукавов малого диаметра – более совершенная на сегодня группа технологий.
Такой комплекс оборудования использует привозную углекислоту в цистернах или в баллонах, из которых газ через устройства подогрева и регулирования подачи нагнетается под собственным давлением в теплицу к растениям по пластиковым рукавам.
Несмотря на удобство и относительную техническую простоту систем, работающих на привозной углекислоте, их эффективное применение осложняется следующим обстоятельством. Подаваемая к растениям углекислота должна иметь высокую чистоту. Подобный высокоочищенный продукт, который подходит для подкормки тепличных растений, стоит достаточно дорого. На практике часты случаи покупки дешёвой жидкой углекислоты из спиртзаводов и химпроизводств, которая плохо очищена и пригодна лишь для технического использования.

В ней могут содержаться значительные примеси сивушных масел, сероводорода и аммиака, этаноламинов, которые отрицательно сказываются на продуктивности растений и здоровье людей. Такую углекислоту не следует использовать для подкормки растений.

Углекислый газ своими руками для растений

Несколько правил подачи газа

При обычном уличном выращивании или в пленочных парниках растения получают углекислый газ из атмосферы. В капитальных и промышленных парниках для насыщения им воздуха используют различные методы и приспособления.

В крупных фермерских хозяйствах часто используют отходящий газ котельных (дым). Перед тем, как подавать газ в теплицы, его необходимо очистить и остудить, только после этого он подается к грядкам по газопроводной системе.

Распределительные сети – это полиэтиленовые рукава с перфорацией, протянутые вдоль грядок. Такая система должна иметь аппаратуру, контролирующую состав газа на предмет содержания примесей, которые могут угрожать здоровью людей, работающих в теплицах.

Общая стоимость такого оборудования достаточно высока, вопрос в том, окупятся ли расходы на нее.

Более простым решением будет использование твердой углекислоты – сухого льда, который можно разложить в теплицах.

Для обеспечения газом небольших теплиц используют газогенераторы, выделяющие углекислый газ из воздуха и закачивающие его внутрь парника. Он производит до 0,5 кг газа в час. Его достоинства:

  • не зависит от внешних источников;
  • генерирует абсолютно чистую углекислоту в нужных объемах;
  • имеет сенсорный дозатор;
  • прост и недорог в обслуживании (замена фильтров – 1 раз в полгода);
  • не влияет на температуру и влажность в теплице.

Газовые баллоны

Использование сжиженного газа в баллонах также возможно. Но этот способ потребует дополнительного оборудования для подогрева и регулирования подачи газа, то есть снижения давления. Только через такие устройства возможно безопасное для растений поступление газа в теплицу.

Если хозяйство включает животноводческую ферму, можно наладить воздухообмен помещения теплицы и животноводческого помещения. Животные выдыхают углекислый газ, который так необходим растениям. Теплицу можно построить так, чтобы два помещения имели общую стену.

В ней делается два отверстия – наверху и внизу. На них устанавливаются маломощные (во избежание сквозняка) вентиляторы. В итоге животные получают кислород от растений, а те углекислый газ.

Недостаток этого способа в том, что достичь необходимого баланса можно только опытным путем: куда пристроить теплицу к свинарнику или крольчатнику? И как регулировать поступающее количество газа от разных животных.

В теплице на приусадебном участке используют навоз, который, разлагаясь, выделяет углекислый газ в количестве, достаточном для его обитателей – огурцов, томатов и прочих культур.

Если поставить в парнике бочку с водой и положить в нее десяток крупных стеблей крапивы, можно получить еще один естественный источник углекислого газа. Воду нужно периодически доливать. Этот способ имеет один недостаток – довольно неприятный запах разлагающейся крапивы.

Еще один источник углекислого газа – спиртовое брожение. Некоторые садоводы ставят между растениями емкости с брагой – вода, дрожжи и сахар. Но этот способ затратный и ненадежный, так как срок брожения небольшой и готовить новые канистры с брагой дорого.

Главным естественным источником углекислого газа для растений является воздух. Открывание форточек – это простейший способ подачи в нее углекислого газа. Ночное дыхание растений и выделение углекислого газа почвой также наполняет парник газом.

Растения получают углекислоту и из почвы, которая образуется в результате разложения содержащихся в ней органических веществ, дыхания корней и микроорганизмов. Но это всего лишь четверть от их суточной потребности.

Многих интересует вопрос можно ли устроить углекислый газ в теплице своими руками? Попробуем ответить на этот вопрос.

Изготовление газогенератора своими руками возможно, но не рационально. Оно потребует не только больших финансовых вложений, но трудозатрат.

Кроме того, генератор со2 для теплиц требует наличия отдельного помещения, так как это устройство, выделяющее большое количество тепла, по сути, печь.

Гораздо проще и дешевле использовать имеющиеся технические, биологические или естественные источники углекислого газа.

  1. Усвоение СО2 растениями напрямую зависит от освещения. При искусственном освещении газ усваивается растениями лучше, чем при летнем естественном дневном свете. Это означает, что в зимний период подкормка газом должна быть меньше, чем летом.
  2. Время подачи газа растениям не менее важно, чем его количество. Первую подкормку в течение дня лучше производить утром, примерно через 2 часа после наступления светового дня. В это время растения лучше всего поглощают газ. Вторую подкормку делают вечером, за 2 часа до наступления темноты.
  3. У каждой культуры свой объем потребления углекислого газа. Поэтому обязательно интересуйтесь, сколько газа нужно томатам, перцам или цветам. Излишек газа может навредить растениям.

Знания – сила, чем лучше мы узнаем свои растения, тем с большей благодарностью они отдают нам свои плоды. Успехов и хороших урожаев. Ну а систему подачи углекислого газа в теплице выбирайте сами, в зависимости от своих возможностей и предпочтений.

Чтобы растения правильно развивались, им просто необходимо большое количество химических элементов.

Именно для этого их постоянно подкармливают жидкими и твёрдыми удобрениями.

С недавних пор большую популярность обрела подача углекислого газа растениям.

Кроме подкормки минеральными и органическими удобрениями, регулярных поливов и поддержания необходимой температуры, растения нуждаются в углекислоте. Многие фермеры расценивают её как удобрение.

Присутствие углекислоты в теплице жизневажно, чтобы растения правильно развивались и давали большой урожай. Польза СО2:

  • Способствует активизации раннего и наиболее активного цветения, увеличению плодоношения;
  • Принимает участие в синтезе сухого вещества на 94%;
  • Помогает повысить стойкость растений к болезням и вредителям.

Если растения выращивают в открытом грунте либо в плёночных парниках, то они получают СО2 из атмосферы. В производственных парниках, чтобы насытить им воздух, применяют разные способы и устройства.

Необходимость выработки углекислоты

Достаточно часто собираются такие системы, которые способны доставлять углекислый газ в аквариумную воду. Часто они имеют множество применений, которые не ограничиваются этим. Они участвуют во многих процессах, например:

  • Выработка кислорода. Кроме питательных веществ, растения в процессе фотосинтеза могут снабжать воду этим веществом. Таким образом, рыбки, которые живут в аквариуме, будут нормально дышать и не умрут от нехватки кислорода.
  • Контроль уровня pH. Кислотность немного повышается, снижая тем самым его показатель. Это создаёт гораздо более приемлемые условия для нормального функционирования всех живых существ внутри.

Стоит отметить, что полностью перекладывать на растения работу по насыщению воды кислородом нельзя. Ночью, при отсутствии солнечного света, который нужен для образования глюкозы из углекислоты, процесс не запустится.

Поэтому обязательно нужен аэратор — механизм, который сможет автоматически подавать воздух в воду, после чего какое-то количество кислорода будет в ней растворяться и не давать погибнуть живности внутри.

Допустимые уровни концентрации

Чтобы все процессы происходили правильно, нужно некоторое минимальное количество молекул углекислоты в воде. Несмотря на то, что жители аквариума в процессе жизнедеятельности тоже выделяют этот газ, его количества абсолютно недостаточно для протекания фотосинтеза.

Поэтому стоит знать, насколько большой должна быть концентрация газа, чтобы при этом не перенасытить воду им. Это не приведёт ни к чему хорошему, так как в ночное время может происходить кислородное голодание у живых существ.

Показатель зависит от объёма аквариума, но при этом подчиняется закону, при котором можно вывести его среднее значение. Оно равняется 2—10 миллиграммам на литр. Для стоячих водоёмов могут быть нормальными показатели и в 30, но всё слишком индивидуально.

В первую очередь нужно знать, в каких условиях жили те растения, которые были высажены. Если привычное для них состояние — лёгкое или почти отсутствующее течение, то можно добавлять больше углекислоты и не бояться перерасхода.

Нужно следить за уровнем СО2, так как перенасыщение может привести к кислородному голоданию аквариумных рыбок.

Способы доставки CO2

Любой фермер и садовод заинтересован в хорошем урожае. При строительстве теплиц, особенно капитальных, обращается внимание на ее теплоизоляцию.

Чем герметичней парник, тем меньше проникает в нее воздух и, соответственно, углекислый газ. А он необходим для нормального роста и плодоношения культур, выращиваемых не в открытом грунте.

  • Для чего нужен углекислый газ
  • Фото
  • Варианты подачи газа
  • Несколько правил подачи газа

Помимо минеральных и органических удобрений, полива и температурного режима растениям необходим углекислый газ. Некоторые садоводы называют его удобрением.

Он участвует в фотосинтезе – «обмене веществ» в организме растения.

Именно поэтому очень важно, чтобы была организована система подачи углекислого газа в теплице.

со2 в теплицах важно для нормального роста растений. От достаточного его количества зависит урожайность садовых культур.

Газ в парнике стимулирует раннее и более активное цветение, увеличивает плодоношение.

Он более важен, чем минеральные удобрения.

СО2 участвует в синтезе сухого вещества растений на 94 %, и лишь 6% образуется с помощью минеральных удобрений. Кроме того, он повышает устойчивость растений к болезням и вредителям.

Для того чтобы выбрать оптимальный вариант, следует знать обо всех имеющихся. Каждый из них различается как своей сложностью, так и ценой за применение и последующую эксплуатацию установки. Если задача стоит сделать генератор CO2 для аквариума своими руками, не стоит надеяться на сильное удешевление процесса. Особенно если используется более надёжный, долговечный и автоматизированный способ.

Итак, подачу углекислого газа в аквариум можно проводить такими способами:

  • С помощью системы брожения. От владельца в этом случае понадобится только снабжать самодельную установку реагентами для беспрерывного выделения углекислоты.
  • Регулярным введением содержащих CO2 препаратов. Способ действенный, но требует построения графика и точного его соблюдения.
  • Подведение баллона с газом, находящимся под большим давлением. Если такое устройство будет снабжено автоматическим клапаном, участие человека сведётся к минимуму.
  • Использование газированной воды. Обычная бутылка, купленная в магазине, способна обеспечить надолго весь резервуар питательным веществом.

Последний способ, естественно, не претендует на большую эффективность, но несмотря на это, обычная бутылка воды — это довольно серьёзный источник углекислоты.

Подача CO2 в аквариум с помощью этой реакции может помочь аквариумистам с ограниченным бюджетом, так как здесь не используются ни дорогие компоненты, ни сложные реагенты. Всё, что нужно — это собрать несколько составных частей:

  • Сахар — примерно 300 грамм.
  • Дрожжи — меньше грамма, лучше придерживаться соотношения 1:1000 и брать количество исходя из массы сахара. В этом случае их должно быть 0,3 грамма.
  • Вода — 1 литр, взбалтывать смесь не разрешается.
  • Бутылка пластиковая, объёмом от полутора литров.
  • Трубка достаточной длины.

Конструкция предельно проста — в крышечке от бутылки проделывается отверстие, в него вставляется трубка, другой конец которой опускается в воду. Через неё выделяющийся в результате реакции газ будет поступать в аквариум и насыщать его.

Если при этом бутылка со смесью будет нависать вертикально над аквариумом, то лучше приделать в систему дополнительный резервуар. Со временем в основной ёмкости образуется брага, которая может быть подхвачена углекислотой и отправлена в воду.

Однако нельзя абсолютно точно сказать, какое количество углекислоты попадает в аквариум: реакция просто протекает без малейшего контроля и может быть очень неравномерной из-за того, что сама смесь выделяет газ неоднородно.

Одним из самых эффективных реактивов можно назвать Tetra CO2 Plus, который легко растворяется в воде и распространяется в виде сильно насыщенного газом раствора. Одной упаковки при обычном использовании должно хватить на 100 применений в 20-литровом аквариуме, а это несколько лет непрерывного снабжения углекислым газом.

Подавать СО2 в аквариум с его помощью легко — достаточно вливать 2,5 миллилитра в воду раз в неделю. Постепенное высвобождение газа будет долго питать растения и поддерживать процесс фотосинтеза.

  • Не нужно сооружать громоздких конструкций для функционирования.
  • Простота в эксплуатации.
  • Относительно длительный период работы средства.
  • Препятствие излишнему росту водорослей.

Называются такие приборы по-разному, но суть их всегда одна — обеспечить как можно более плавное введение газа в толщу воды так, чтобы он не оказался сразу на поверхности. Для этого в них, как правило, установлены специальные ограничители потока, запускающиеся в момент включения. Несколько вариантов наименований:

Они зависят, в первую очередь, от производителя, который пытается привлечь внимание к своему продукту. Принцип действия же везде более или менее похож.

К баллону прикрепляются специальные датчики, которые измеряют различные показатели состава воды и на их основании отмеряют выпуск газа. Есть модели с автоматическими определителями уровня pH с помощью электрода, выведенного в воду.

Кроме того, если слежка за pH не осуществляется, то эти баллоны контролируют подачу с помощью специального магнитного клапана, который по таймеру выпускает строго отмеренное количество CO2.

Если система только что была установлена, не стоит сразу открывать вентиль на полную. Это нужно делать плавно, чтобы не допустить повреждения тонкой мембраны, которая находится в редукторе.

При помощи специальных датчиков, прикрепленных к баллону, удобно следить за уровнем важных показателей.

Газированная вода

При использовании сверхмалых объёмов, такой способ является одним из самых эффективных и быстрых. Это так из-за того, что сама газировка уже является раствором в воде углекислоты. Сладкая вода по объективным причинам не подходит.

Концентрация в закрытой бутылке стремится к 10 тысячам миллиграммов на литр. После открытия газ высвобождается и число стремительно уменьшается до показателя в 1500 мг/л, но даже этого более чем достаточно. На каждые 10 литров воды нужно будет добавлять всего 20 мл газировки.

Однако не стоит слишком сильно обнадёживаться. Главным недостатком, как и в случае с брагой из сахара и дрожжей, будет именно незнание точной концентрации газа. А это усложняет расчёт оптимальной дозировки.

Кроме того, как ни странно, именно это метод — самый дорогой из всех представленных. Цена в пересчёте на один грамм углекислоты выше в три раза по сравнению с ближайшим конкурентом. Поэтому стоит рассматривать газировку, как способ экстренно поднять концентрацию нужного показателя до приемлемого значения, когда другие по каким-то причинам недоступны.

Контроль системы подачи углекислого газа и генератора СО2 для теплиц. Сделать своими руками

Чтобы эффективно насыщать воду углекислотой, нужно обязательно знать её текущий уровень. Имея эти данные, очень просто отрегулировать уровень газа и привести его в норму. Среди таких приборов есть:

  • Дропчекер . Это ёмкость, одна часть которой заполнена эталонным раствором для измерения карбонатной жёсткости, а вторая — таким же веществом, но для определения pH. Между ними всегда есть прослойка воздуха, которая не даёт смешиваться.
  • Счётчик пузырьков . Представляет собой прозрачную колбу, в которой находится вода. С обеих сторон она врезана в трубку, по которой идёт углекислый газ. От того, каким будет интервал вхождения в счётчик соседних пузырьков в воде, фактически зависит скорость подачи. Это самый наглядный пример того, как можно пронаблюдать степень насыщения.

Кроме этого, можно отдельно замерить все показатели, которые показывает дропчекер и воспользоваться таблицей, приводящей соотношение двух величин с концентрацией CO2. Есть и онлайн-калькуляторы, которые делают все расчёты автоматически. Единственное, что нужно учитывать — временной период, на который производится вычисление.

Есть ещё один метод, но он предназначен для очень опытных людей, поддерживающих свои аквариумы в нормальном состоянии. Это определение «на глаз», но при этом специалистом учитываются такие факторы, как освещённость толщи воды и скорость выделения пузырьков. Нужно также знать хотя бы примерно концентрацию газа в аквариуме на момент измерения.

Тогда по одному наблюдению за тем, как быстро выделяются пузырьки, специалист может сказать насколько сильно будет меняться содержание углекислоты за любой временной период. Опасность такого расчёта состоит в том, что знать какой объём биомассы в резервуаре невозможно, так как в нём постоянно идёт размножение.

Источник статьи: http://slavarod.ru/tepliczy/sistema-podachi-uglekislogo-gaza-i-generator-so2-dlya-teplicz-svoimi-rukami

Читайте также:  Резиновые ковры для газона
Оцените статью