Умные системы для теплиц

Что такое умные теплицы и будет ли расти объем их рынка

Рост численности населения, изменения климата и урбанизация приводят к большему спросу на продукты. К примеру, в эффективном выращивании агрокультур даже в северных широтах помогают умные теплицы.

Что такое умная теплица

Появление умных теплиц и оранжерей произвело революцию в сельском хозяйстве, позволив более эффективно выращивать экзотические фрукты в северных широтах. В основе любой умной теплицы – датчики, исполнительные механизмы, системы мониторинга и управления, которые в комплексе позволяют оптимизировать многие факторы и условия роста агрокультур.

Умная теплица – это полностью автоматизированная конструкция, призванная облегчить процесс выращивания агрокультур и минимизировать использование ручного труда. Этот сельскохозяйственный объект включает в себя микроконтроллеры, датчики и приложения «интернета вещей».

Часто умные теплицы работают в синхронизации с другими технологическими решениями, например, технологиями автоматического полива и системами HVAC. Интеллектуальные датчики фиксируют данные о росте растений, орошении, наличии вредителей и освещении и отправляют их на локальный или облачный сервер. Веб-консоль администратора позволяет фермерам настраивать параметры системы и интегрировать ее с другими решениями. Мобильное приложение генерирует оповещения и отчеты о производительности теплицы IoT.

По типу умные теплицы можно разделить на те, где используются гидропоника (выращивание агрокультур без почвы) и обычное выращивание агрокультур в грунте. Аналитики MarketsandMarkets отмечают, что на рынке преобладают решения грунтового выращивания.

Ключевыми для умных теплиц стали такие технологии, как:

  • LED-проекторы для роста растений;
  • технологии подключения;
  • ирригационные системы;
  • клапаны и насосы;
  • системы мониторинга;
  • системы управления.

Какие технологии делают теплицы умными

По мнению аналитиков MarketsandMarkets, на рынке умных теплиц главенствуют технологии HVAC и LED-фитоламп.

HVAC-оборудование – это комплекс, состоящий из систем отопления, вентиляции и кондиционирования помещений. Задача HVAC-систем в теплицах и оранжереях – поддерживать идеальную температуру для круглогодичного выращивания конкретной культивируемой агрокультуры или экзотических растений, сглаживая негативные факторы окружающей среды. Преимущества HVAC заключаются в минимизации операционных затрат.

Светодиодные (LED) проекторы

При помощи светодиодов легко обеспечивается дополнительное освещение культивируемых агрокультур в теплице или оранжерее. Лучшие системы освещения имеют компактный дизайн и долгий срок эксплуатации (от 30 до 50 тысяч часов) и расходуют меньше энергии.

В зависимости от потребностей фермеров возможны любые комбинации датчиков: температурные датчики, датчики влажности, датчики экспонометра, датчики состава почвы (кислотность, химический состав), датчики точки росы, датчики контроля качества воды для полива и так далее.

Управление датчиками при помощи специального блока

Для связи датчиков используются проводные или беспроводные сети. В удаленных районах могут быть задействованы LPWAN, такие как: LoRaWAN, RF, NB-IoT и так далее. Как правило, для связи используются сети не лицензируемого диапазона, что во многих случаях сокращает стоимость использования оборудования, абонплату за сервис и так далее.

Десктопные и мобильные приложения

Системы мониторинга, как правило, имеют наглядный и интуитивно-понятный интерфейс. Контролировать все процессы можно с помощью планшета, смартфона, ноутбука.

Преимущества автоматизации теплиц

Защита от перепадов температуры и экстремальных температур

Поддержание и контроль диапазона температур в тепличной среде имеет решающее значение. Колебания температуры могут повредить или убить растения в течение нескольких часов. Системы дистанционного мониторинга защищают ценные растения от экстремальных температурных колебаний.

Контроль инвентаря и другого оборудования

Кроме поддержания оптимальной температуры необходимо обеспечить сохранность инвентаря и эффективную работу систем кондиционирования, поддержания влажности и так далее.

Чем раньше фермер обнаруживает падение температуры или отказ оборудования, тем больше вероятность сохранить имущество и растения. Системы удаленного мониторинга отправляют обновления в режиме реального времени, поэтому сотрудники предприятия могут оперативно реагировать на угрозы.

Если какое-либо условие выходит за пределы предварительно установленного диапазона, то устройства или система немедленно предупреждают ответственных сотрудников по телефону, через электронную почту или SMS. Уведомления о нештатных ситуациях обычно оповещают фермеров о:

  • понижении температуры;
  • плохой вентиляции;
  • высоком уровне углекислого газа;
  • изменении влажности;
  • отказе оборудования;
  • утечке воды.
Читайте также:  Чем обрабатывать газон от собак

Профилактика заболеваний в период вегетации

Во время вегетационного периода системы в умных теплицах могут контролировать различные условия окружающей среды. Для этого используются как проводные, так и беспроводные датчики. Поддержание заданных параметров температуры, уровня влажности, освещения, циркуляции воздуха имеют решающее значение для предотвращения появления плесени, болезней и максимизации урожайности растений.

Строительство умной теплицы

Для строительства умной теплицы необходимо выбрать надежного поставщика IoT-оборудования и сервисов, за плечами которой не один проект в сфере умного сельского хозяйства. Поставщик подбирает правильный стек технологий для проекта на основе многих факторов:

  • размер тепличного хозяйства;
  • тип агрокультур;
  • реализованные технические решения.

Необходимое количество IoT-датчиков рассчитывается индивидуально. Как правило, один датчик в зависимости от предназначения способен охватить до 30 м 2 пахотных земель. Микроконтроллеры датчиков потребляют очень мало энергии (150 ма с активной передачей данных в сетях BLE и Wi-Fi и всего 5 ма с включенным режимом глубокого сна).

Следующий шаг – обеспечение связи между микроконтроллерами, входящими в систему IoT. Для этого необходимо выбрать тип подключения. Затем требуется сконфигурировать сервер, управляющий датчиками и системами в умной теплице. Следующим шагом станет настройка программного обеспечения. Продвинутые системы используют интуитивно понятный интерфейс, в котором датчики добавляются по нажатию кнопки. Каждому датчику можно задать свое имя, а территории умной теплицы можно разделить на секторы. Отслеживать информацию можно как по секторам, так и в целом. Последним этапом создания умной теплицы становится настройка мобильных или веб-приложений и частоты оповещений о работе датчиков в нормальном режиме, а также экстренных предупреждений о внештатных ситуациях.

Где реализованы проекты умных теплиц

Умные теплицы используются в основном в северных широтах. В условиях экстремального земледелия невозможно эффективно выращивать даже овощи, не говоря уже об экзотических фруктах. К примеру, население Ямало-Ненецкого автономного округа (540 тысяч человек) потребляет в год 11 тысяч тонн огурцов и томатов. Однако только 18 тонн этих овощей выращивается в теплицах региона.

Если производство находится далеко, то доставка агропродукции в ЯНАО серьезно отразится на итоговой стоимости. Обычно жители региона потребляют овощи и фрукты из других регионов России и стран ближнего зарубежья. Поэтому в столице региона – Салехарде, к 2020 году планируется построить тепличный комплекс площадью 1 га. Этот комплекс рассчитан на производство 1 тысячи тонн овощей ежегодно.

В Китае создали приложение для смартфонов, которое управляет многими процессами (полив, внесение удобрений, контроль температуры и влажности воздуха) в умной теплице. Площадь комплекса – 0,5 га. Разработчики отметили, что воду и питательные вещества система доставляет прямо к корням растений. Каждые полчаса система оповещает о микроклимате в тепличном комплексе и выявленных вредителях агрокультур.

Объем рынка умных теплиц

Отдельных данных по количеству умных теплиц и прогнозов по развитию этого сегмента нет. На долю интеллектуальных решений для сельского хозяйства приходится 6% всех проектов IoT, отмечают аналитики. По оценкам MarketsandMarkets, объем рынка в 2018 году достигнет $1,26 миллиарда, а в 2023 году $2,28 миллиарда. Среднегодовые темпы роста рынка в период с 2018 по 2023 гг. оцениваются в 12,6%. Основными драйверами роста рынка стали рост численности населения, изменения климата и урбанизация.

Ожидается, что сегмент интеллектуального сельского хозяйства будет развиваться высокими темпами. Но высокая стоимость развертывания решений и высокие первоначальные инвестиционные затраты могут привести к снижению темпов роста рынка в развитых странах Ближнего Востока и Африки. Европа останется лидером рынка в течение прогнозируемого периода. У Нидерландов, Испании и Италии есть большие площади под оранжереи.

Технологии сельского хозяйства в контролируемой среде (CEA) главным образом используются в Нидерландах и скандинавских странах. Внутреннее садоводство набирает быстрые обороты в некоторых крупнейших странах Европы. Быстрое внедрение технологий ожидается в странах с развивающейся экономикой, как Япония, Китай и Индия.

Читайте также:  Городские цветники схемы посадки

По оценкам аналитиков, ключевые технологии, используемые для умных теплиц: лампы для роста растений, технологии подключения, ирригационные системы, клапаны и насосы, системы мониторинга и управления. В 2016 году наблюдался резкий рост спроса на LED-лампы для выращивания растений.

Ключевые игроки на рынке: Rough Brothers, Heliospectra, Terrasphere Systems, Argus Control Systems, LumiGrow, Ceres Greenhouse Solutions, Hort Americas, JFE Engineering Corporation, Nexus Corporation, Logiqs, Certhon и GreenTech Agro.

Узнать больше о внедрении ИТ-технологий в промышленности вы сможете на Конференции «Управление рисками в промышленности», которая пройдет 7 декабря 2018 года в Москве.

Источник статьи: http://www.cfo-russia.ru/issledovaniya/index.php?article=43926

Делаем умную теплицу на Ардуино своими руками

Автоматизация вездесуща. Различные механизмы создают комфортные температурные условия, помогают при готовке пищи, ухаживают за одеждой, включают и гасят свет, а также поддерживают чистоту помещения. Но использование их не ограничивается бытом человека. Вообще во всем окружении, на улице или производстве, при перевозках чего-либо, в магазинах или сельском хозяйстве — везде работают незримые помощники.

С развитием технологической базы вырастает и уровень автоматизации. Сейчас роботы или механизмы выполняют не просто последовательность заложенных действий. Их устройство теперь позволяет осуществлять своеобразный «выбор», в зависимости от изменившихся внешних условий. Самый простой пример — стиральная машина. Ее внутренняя начинка определяет температуру воды и при необходимости подогревает ее, следит за временем стирки и правильностью текущих циклов выполнения.

Кроме уже описанного, в нашу жизнь вошли «умные» дома, города, кварталы или улицы. Главное отличие их от обычных — присутствие взаимосвязанных между собой систем управления. Каждая из которых контролирует одно устройство из присутствующих в комплексе. Но, работу всех их определяет общая система, отправляя сведения необходимые для функционирования или указывающие команды.

Одной из относительно редко использующихся схем интеллектуального управления можно назвать применение его в сельском хозяйстве, а конкретно для полной автоматизации парников или аппаратуры ухода за растениями. Собственно, подготовить и собрать умную теплицу на Ардуино своими руками вполне по силам и относительно разбирающемуся в электронике человеку. О чем и будет рассказано далее.

Общие сведения об управляющих системах

Интеллектуальность современного оборудования обеспечивается микроконтроллерами. Это небольшие и ограниченные по ресурсам полноформатные компьютеры, зачастую размещенные на одной плате или микросхеме. Несмотря на свои маленькие размеры их мощности вполне достаточно для того, чтобы управлять различным оборудованием. Информацию, необходимую для выполнения своих функций, такие микрокомпьютеры получают посредством различных специализированных датчиков. Общее нахождение устройств в единой сети обеспечивается посредством дополнительных присоединяемых к микроконтроллеру модулей.

Выполняя свою программу, интеллектуальные устройства, выдают управляющие импульсы на исполняющие цепи включающие двигатели, насосы, нагреватели или любые другие устройства для управления которыми и создается вся система.

Основой многих из подобных комплексов составляют контроллеры серии Arduino, STM, Ti MSP430, Netduino, Teensy, Particle Photon, ESP8266 или иных распространенных плат такого типа в мире. Кроме того, некоторые специалисты создают свои варианты микро — компьютеров, управляющих оборудованием — на основе устаревших ПК или каких-либо 8 разрядных процессоров, к примеру, Z80.

Чего бы хотелось

Наибольшее желание любого огородника — получать максимальный урожай при минимальных затратах труда. Одним из вариантов решения этой проблемы становятся теплицы. Но и в таком случае хочется, чтобы в ней самостоятельно грядки поливались, освещались, и обогревались, когда нужно. Ну и конечно, была организована автоматическая система вентиляции, для минимизации усилий по открыванию и закрыванию форточек.

Мониторинг и настройка

Конечно, в первую очередь, требуется система управления всем этим высокоинтеллектуальным хозяйством. Кроме того, желательно получение информации о текущем состоянии напрямую или на домашний компьютер, или на смартфон. С этой целью будет использоваться контроллер для теплицы на Arduino.

Управление

В соответствии с желаниями, необходимо организовать автоматическое управление отоплением пола (как основы подогрева посадок), открытия форточек, увлажнением почвы. Хороша будет система контроля освещения, которая зажигает его, если на улице темно.

Реализация в «железе»

Ничего сложного в реализации проекта нет. Достаточно применить плату Arduino, в комплексе с несколькими датчиками (влажности, температуры, освещенности, наполнения бака полива и концевых контактов окон проветривания), а также парой двигателей для вентиляции и смонтировать систему «теплый пол».

Читайте также:  Ландшафтный дизайн для террас

Но сначала требуется сделать саму теплицу. Для основы была создана такая модель:

Вот ее перенос в реальность:

Мониторинг и настройка

Визуализация информации, а также пункты меню настройки выводятся на LCD1602 дисплей, с конвертором в IIC/I2C UC-146 для подключения его к Arduino.

Для выбора параметров используются 4 клавиши. Все это вместе желательно разместить в общем контрольном ящике.

Кроме визуального, для удаленного контроля будет использоваться модуль WIFI связи ESP8266 LoLin NodeMCU2, с помощью которого информация с использованием UDP протокола будет передаваться на домашний компьютер с настроенным web-сервером и базой данных. Которые впоследствии, можно будет получить на любом устройстве в общей сети — смартфоне, цифровом телевизоре или планшете.

Подключаться модуль к ардуино уно будет через серийный порт (RX/TX). Причем электрический контакт производится напрямую TX(модема)-TX(Arduino) и RX аналогично. Почему это важно — зачастую рекомендуют делать соединение перекрестным RX-TX. В прилагаемой схеме это не нужно.

Полив

Система полива работает на основе физических принципов и насоса, который функционирует определенное время. Периодом и началом которого управляет Ардуино. С утра бак наполняется водой, что ограничивается временем в управляющем скетче и датчиком на прилагаемом чертеже. В течение дня она прогревается воздухом в теплице. Вечером происходит кратковременное включение насоса, который слегка переполнив емкость запускает полив самотеком.

Так он выглядит в реальности (вместе с системой подачи воды на грядки):

Его схема работы:

Ночью бачок стоит пустым, чтобы в случае отключения обогрева и падения температуры воздуха ниже нуля его не сломало замерзшей водой.

Отопление

Подогрев земли сделан предварительной укладкой «теплого» пола под будущие грядки. Включение происходит через специальное реле на 30 А, так как мощности выдаваемой ардуино никогда в жизни бы не хватило для питания такого потребителя.

Кроме него используется обычный бытовой нагнетатель теплого воздуха, который позволяет нагреть внутреннее пространство теплицы. Он также подсоединяется к микроконтроллеру.

Вентиляция

Для обеспечения движения воздуха предусмотрены два поворотных окна, процесс открытия и закрытия которых выполняется двигателями от автомобильных дворников. В свою очередь, подключённых к Arduino.

Освещение

Чтобы обеспечить растения постоянным притоком света, используются китайские светодиодные ленты, которые включаются в зависимости от таймера и уровня освещенности.

На приведенной ниже схеме оно подключается к выводам резерв (освещение).

Управляющая электрическая схема

Ну и конечно самая главная часть — принципиальная схема «мозгов» всей этой конструкции.

Маленькое примечание: мощности для обогревателей (воздуха и почвы) у реле Arduino не хватает. Дополнительно к ним используются в качестве посредников токовые, высокоамперные варианты, подключаемые уже непосредственно к потребителям.

Программная часть

С оборудованием все понятно. Осталось разобраться с программами, которые им управляют и контролируют состояние всей системы. Так как в комплексе есть два высокоинтеллектуальных устройства — ESS8266 и сам Arduino. Соответственно для обоих нужны свои программы. Помещение их в память устройств, в обоих случаях производится через Arduino IDE.

Мониторинг

Скетч, который необходимо выгрузить в ESP8266 LoLin NodeMCU, для обеспечения его связи с Arduino и WIFI роутером.

Управление

Ну и в финале, большой скетч управления самой теплицей, который выгружается в Arduino.

Замечания по конструкции

Датчик DN11 желательно заменить на DN22, который хоть и стоит дороже, но более точен и функционирует без проблем свойственных своему младшему тезке. Для питания контуров управления можно использовать компьютерный блок питания, желательно форм-фактора AT.

Заключение

Как видно из всего выше сказанного создать у себя на участке умную теплицу не так уж и сложно. Какие-то элементы можно убрать, что-то можно добавить, но после проделанной работы важно одно — вы получите у себя на участке функциональную теплицу, которая будет вас радовать урожаем и сама за собой следить, вам останется только провести посадку и ждать урожая.

Видео по теме

Источник статьи: http://vashumnyidom.ru/komfort/uxod/umnaya-teplica-na-arduino-svoimi-rukami.html

Оцените статью