- Теплица с вакуумными стеклами
- Вакуумная панель
- Вакуумная панель.
- Описание вакуумной панели:
- Преимущества вакуумной панели:
- Принцип действия вакуумной панели:
- Полностью закрытая теплица с технологией поддержания параметров микроклимата
- Основную нагрузку по обогреву теплицы по-прежнему должны нести все остальные контуры водотрубной системы обогрева.
- Таким образом, естественная вертикальная конвекция воздуха в теплице дополняется вынужденной горизонтальной конвекцией, что обеспечивает абсолютно равномерное распределение воздушных потоков и, соответственно, идеальную выровненность микроклимата. Такое, в общем-то простое, решение позволяет разделить разнотемпературные воздушные потоки в теплице (причем разделить за счет естественной конвекции, без дополнительных затрат энергии!), предоставляя возможность управления ими: как с точки зрения поддержания в них необходимого уровня температуры, влажности и содержания СО2, так и с точки зрения кратности воздухообмена в теплице.
- Все оборудование работает в автоматическом режиме (разработано специальное программное обеспечение) и управляется отечественной автоматикой по данным датчиков метеопараметров снаружи теплицы и по датчикам температуры и влажности воздуха, содержания СО2 в воздухе внутри теплицы
Теплица с вакуумными стеклами
2.3. Тепло без топлива.
Вступление. Современная страшилка, это «энергетически кризис». Связанный с тем, что нефть и газ скоро закончится. Но это в будущем, реальная же страшилка это чуть ли не ежегодное повышение стоимости электроэнергии и природного газа.
И простому обывателю надо, с этим что-то делать, а заодно так сказать, в более глобальном смысле защитить себя и своих потомков от последствий «энергетического кризиса».
Это достаточно просто так как все технологии для создания сверхтеплых и главное само отапливающихся домов, а также доступных и простых без топливных отопительных систем и возможно даже систем электроснабжения уже есть. Конечно многолетние попытки создания так называемого ‘солнечного дома’ для зоны умеренного климата до сих пор нельзя считать успешными. Считается, что причина заключается в географических особенностях зоны умеренного климата. На зимние месяцы, когда жилое пространство здания нуждается в отоплении, приходится минимальная продолжительность светового дня и минимальная интенсивность солнечного излучения. Традиционные солнечные отопительные системы с приемниками солнечного излучения, устанавливаемые, как правило, на крыше, не способны в зимний период обеспечивать приемлемую температуру жилых помещений. Попытки создания аккумулирующей системы, запасающей летнее тепло, так же нельзя считать успешными ввиду чрезвычайной громоздкости и дороговизны подобных систем. Необходимы принципиально новые идеи и новые инженерные решения [8]. О которых и пойдет речь в данной статье. Вакуумная теплица.
Сам принцип получения дармовой энергии можно продемонстрировать на примере теплицы.
Стекло хорошо проводит лучевую энергию от Солнца и частично задерживает тепло в теплице.
Естественно, что стекло не может удержать тепло полностью, но если повысить теплоизоляционные свойства стекла то проблема накопления тепловой энергии будет решена.
Решить проблему повышения теплоудерживающих стекол весьма просто, для этого нужно усовершенствовать «стенки» теплицы, стенка должна быть двойной, состоять из двух слоев сверхпрочного стекла, а между ними надо просто выкачать воздух, создать вакуум. Именно так предлагает сделать изобретатель Иван Степанович Филимонов: «Поэтому изобретатель предлагает другой выход — вполне реальный: выращивать сельскохозяйственную продукцию — в вакуумных теплицах.В отличие от обычных в них будут двойные стёкла, а между — вакуум. Такой пакет — идеальный теплоизолятор».[1]
Возможно, уже в скором времени данные вакуумные крыши вытеснят обычные. Сверхтеплый дом.
Естественно, что по данной технологии можно изготавливать весь дом, конечно тогда придется продумать систему вентиляции но и это не проблема. Так системами рекуперационной вентиляции уже давно никого не удивишь. Суть их в том, что в них происходит обмен теплом между теплым воздухом исходящим из помещения и тем, что берется из окружающей среды.
Источник статьи: http://samlib.ru/l/lemeshko_a_w/aa.shtml
Вакуумная панель
Вакуумная панель.
Вакуумная панель имеет очень низкий коэффициент теплопроводности – 0,002 Вт/м·К. Она позволяет уменьшить толщину изоляционного слоя в 6 – 10 раз по сравнению с другими теплоизоляционными материалами.
Описание вакуумной панели:
Вакуумная панель состоит из пористого материала-наполнителя, который помещается в непроницаемую пленку -оболочку, воздух из которой откачивается до давления 1 мбар., после чего оболочка герметизируется.
Вакуумная панель имеет очень низкий коэффициент теплопроводности. Коэффициент теплопроводности может достигать значения 0,002 Вт/м·К.
Основную роль в процессе передачи тепла играет газ , находящийся в порах. Чем меньше размеры пор материала и разветвленнее его структура, тем лучше его теплофизические свойства и, следовательно, ниже коэффициент теплопроводности. В качестве материала-наполнителя используются дисперсные материалы. Например, может использоваться нанопористый диоксид кремния SiO2, состоящий из частиц размером 5 – 20 нм, которые объединены в каркас с характерными размерами пор 20 – 150 нм.
Пленка -оболочка – материал, из которого формируются стенки вакуумной изоляционной панели . Она состоит из нескольких слоев, каждый слой представляет собой очень тонкую металлическую пленку (алюминий, нержавеющая сталь), на которую с обеих сторон нанесен слой пластика. Она имеет превосходные барьерные характеристики. Чтобы сформировать оболочку для материала-наполнителя, мембранные пленки завариваются по краям.
Преимущества вакуумной панели:
– применение вакуумной изоляции позволяет уменьшить толщину изоляционного слоя в 6 – 10 раз по сравнению с другими материалами,
– применение вакуумной изоляции позволяет уменьшить вес изоляционного слоя в 2 – 6 раз,
– вакуумная панель – экологически чистый теплоизоляционный материал.
Принцип действия вакуумной панели:
Для понимания высоких теплоизоляционных свойств вакуумной теплоизоляции необходимо знать механизмы переноса тепла.
Основной механизм переноса тепла в твердых телах — это теплопроводность. При нагревании одного из концов металлического стержня поток тепла движется к его другому концу.
Путем теплопроводности тепло может переноситься и через газы. При этом быстрые молекулы теплого слоя газа сталкиваются с медленными молекулами соседнего холодного слоя. В результате возникает поток тепла. Газы из легких молекул (водород) проводят тепло лучше, чем тяжелые газы (азот). Путем конвекции теплоперенос осуществляется только в газах и жидкостях и основан на том, что при нагревании газа его плотность уменьшается. При неравномерном нагревании более легкие слои поднимаются, тяжелые опускаются. Вертикальный поток теплоты, связанный с этим движением, как правило, значительно превышает поток, связанный с теплопроводностью.
Излучение — это механизм передачи теплоты электромагнитными волнами. Таким путем происходит нагревание солнцем поверхности земли. Способность тела излучать и поглощать электромагнитные волны определяется его атомной структурой.
Вакуумная технология (вакуумная панель) позволяет исключить все три механизма передачи тепла.
Сосуд Дьюара, или термос, — широко известный пример вакуумной изоляции. В пространстве между двойными стенками сосуда Дьюара создается глубокий вакуум порядка 10 -2 Пa. Из-за этого перенос тепла, обусловленный конвекцией и теплопроводностью, практически полностью устранен, и теплопроводность исключительно мала — 10 -3 — 10 -4 Вт/(м•К).
Необходимость создания глубокого вакуума значительно ограничивает возможности выбора формы сосуда и конструкционных материалов. Поскольку разгерметизация сосуда способна нарушить теплоизоляцию, стенки его должны быть абсолютно газо- и влагонепроницаемы. С целью снижения переноса тепла электромагнитными волнами между стенками сосуда Дьюара перечень используемых материалов ограничен металлом, пленкой и стеклом с металлическим напылением.
Источник статьи: http://xn--80aaafltebbc3auk2aepkhr3ewjpa.xn--p1ai/vakuumnaya-panel/
Полностью закрытая теплица с технологией поддержания параметров микроклимата
На сегодняшний день наиболее современными теплицами считаются «полузакрытые» теплицы так называемого пятого поколения с технологиями типа Ultra Clima (от компании KUBO) или Suprim Air (от компании CERTHON). Применение таких технологий позволяет получить следующие преимущества по сравнению с обычными блочными теплицами:
обеспечивают искусственную циркуляцию воздуха в теплице, что создает активный микроклимат, благоприятный для растений, и позволяет повторно использовать тепловую энергию, которая из-под кровли возвращается к основанию теплицы (в том числе и тепло, которое образуется при работе системы искусственного освещения);
дают возможность догревать забираемый из-под кровли воздух с помощью калориферов, или охлаждать его путем подмешивания наружного воздуха, охлаждаемого с помощью так называемых «влажных матрасов» или адиабатических панелей, на которые подается вода. При прохождении через эти панели (или «матрасы») воздух понижает свою температуру за счет испарительного охлаждения;
они позволяет экономить и поддерживать оптимальный уровень СО2 в воздухе теплицы;
за счет малого количества форточек в теплице экономится тепловая энергия и уменьшается коэффициент затенения;
за счет создания избыточного внутреннего давления такие системы позволяют защитить теплицу от проникновения вредителей и инфекционных начал.
И тем не менее, эти технологии не решают всех проблем. Они не позволяют достаточно эффективно бороться с излишней влажностью воздуха в теплице. Именно поэтому в ней оставлены форточки. Пусть и меньшее количество, но оставлено. Такая теплица называется «полузакрытой», поскольку она не может быть полностью закрытой.
Разумеется, искусственная циркуляция воздуха в теплице имеет положительное значение, но на ее создание нужно затрачивать энергию. Вентиляторы (и всасывающие воздух из-под конька теплицы, и загоняющие воздух в теплицу через рукава под лотками с растениями) должны непрерывно работать. Воздух, подаваемый в теплицу через рукава под лотками с растениями, не может нагреваться выше 40-45°С. Соответственно, эти рукава, видимо, могут заменять ростовую трубу (трубу зонального обогрева), но не могут служить основным элементом системы обогрева.
Основную нагрузку по обогреву теплицы по-прежнему должны нести все остальные контуры водотрубной системы обогрева.
Наконец, система испарительного охлаждения воздуха может работать эффективно только в сухом климате, с низкой относительной влажностью воздуха. Именно поэтому создатели подобных технологий и таких теплиц никогда не рекомендовали применять их в умеренном климате. Наилучшие результаты полузакрытая теплица показывает в пустынных, полузасушливых и частично умеренных климатических зонах с очень сухим летом. На территории России таких зон практически нет. Ни Крым, ни Северный Кавказ в эти зоны не попадают. Попадают только низовья Волги (рис. 1).
Какой же должна быть теплица следующего поколения, в которой вышеназванные проблемы решались бы с большей эффективностью, чем в «полузакрытой» теплице так называемого пятого поколения?
Наиболее перспективными в плане внедрения новых технологий управления микроклиматом представляются теплицы ангарного типа, поскольку в них (в отличие от блочных теплиц типа «Венло») не нарушается естественная конвекция воздушных потоков.
В блочной теплице, у которой пролет перекрыт кровлей с несколькими коньками (тип «Венло»), воздух, охлажденный на кровле, опускается вниз и смешивается уже на уровне «голов» растений с теплым воздухом, поднимающимся вверх. Именно поэтому в полузакрытой теплице циркуляция воздуха создается искусственно, путем его забора из-под кровли и подачи в производственную зону снизу через специальные рукава с помощью нагнетательных вентиляторов (рис. 2).
В ангарной же теплице нагреваемый в теплице воздух поднимается вверх, охлаждается, соприкасаясь с наружным ограждением теплицы, и опускается вдоль стенок теплицы до самого низа, где уже смешивается с теплым воздухом, разбавляя его.
Потом снова нагревается, поднимается, охлаждается, опускается и т.д. То есть здесь естественная конвекция работает нормальным образом (рис. 3).
Однако при естественной конвекции температурное поле в теплице не выровнено (рис. 4). Понятно, что растения, находящиеся в центре шатра, и растения, расположенные в боковых рядах, будут находиться в разных температурных условиях.
Если же влажность воздуха в теплице превысит допустимые значения, то для избавления от слишком влажного воздуха придется открывать форточки. Ни один из существующих типов теплиц (включая полузакрытые теплицы) не имеет другой возможности для решения этой проблемы. Но, одновременно с выпуском теплого и влажного воздуха через форточки на улицу, точно такой же объем более холодного воздуха попадает внутрь теплицы (рис. 5).
Причем попадает он прямо на верхушки растений. Далее этот прохладный воздух необходимо нагреть (т.е. затратить дополнительную энергию, которую можно было бы не тратить, если бы у нас была возможность удалить излишнюю влагу из воздуха внутри теплицы, не открывая форточки). При нагревании воздух будет расширяться (увеличиваться в объеме) и стремиться через все неплотности в покрытии теплицы (прежде всего в районе форточек) выйти наружу, что опять же грозит потерями тепла.
Для решения этих проблем необходимо вдоль обеих стен теплицы установить шторы, отделив ими боковые зоны («карманы»). В результате естественная конвекция воздушных потоков в теплице изменится. Холодный воздух, стекая в боковые «карманы», уже не будет смешиваться с теплым воздухом в центре теплицы, и температурное поле в зоне роста растений станет более выровненным.
По крайней мере, до тех пор пока холодный воздух не заполнит полностью боковые «карманы» и не начнет переливаться в производственную зону теплицы.
Чтобы этого не случилось, холодный воздух из боковых «карманов» удаляется минимум с той же скоростью, с какой он туда поступает. Из боковых «карманов» воздух попадает в специальную камеру («камера смешения воздуха»). Эта камера смешения используется для того, чтобы доработать воздух до нужных параметров не только по температуре, но и по влажности, и по содержанию в нем СО2.
Т.е. из этой камеры воздух в теплицу поступает уже с нужными характеристиками. Чтобы поступающий в теплицу воздух равномерно распределялся по теплице, камеры смешения воздуха необходимо размещать с противоположных торцов теплицы по диагонали, снабдив их дополнительными клапанами для подсоса воздуха из внутреннего объема теплицы, а посередине теплицы установить еще одну штору. При этом воздушный поток в производственную зону теплицы подается напрямую в подлотковое пространство с помощью высоконапорных центробежных вентиляторов (рис.6).
Таким образом, естественная вертикальная конвекция воздуха в теплице дополняется вынужденной горизонтальной конвекцией, что обеспечивает абсолютно равномерное распределение воздушных потоков и, соответственно, идеальную выровненность микроклимата. Такое, в общем-то простое, решение позволяет разделить разнотемпературные воздушные потоки в теплице (причем разделить за счет естественной конвекции, без дополнительных затрат энергии!), предоставляя возможность управления ими: как с точки зрения поддержания в них необходимого уровня температуры, влажности и содержания СО2, так и с точки зрения кратности воздухообмена в теплице.
Кроме функции разделения разнотемпературных воздушных потоков, боковые «карманы» выполняют еще несколько важных функций. Во-первых, за счет наличия боковых «карманов» уменьшается температурный градиент между наружным и внутренним воздухом теплицы. А это приводит к снижению теплопотерь!
Во-вторых, наличие относительно холодного воздуха в боковых карманах позволяет очень эффективно избавляться от излишней влаги в воздухе. При охлаждении воздуха его относительная влажность увеличивается и может достигать «точки росы». В этом случае излишняя влага из воздуха выпадает в виде конденсата. В полностью закрытой теплице это происходит в боковых «карманах». Вся боковая поверхность теплицы на высоту бокового «кармана» – это поверхность конденсации! И размер этой поверхности у полностью закрытой теплицы ангарного типа в разы больше, чем у полузакрытой теплицы блочного типа (по отношению к общей площади теплицы)! За счет конденсации влаги на этой поверхности ее излишки удаляются из воздуха и отводятся тут же, в боковых «карманах», через дренажные коллекторы.
Таким образом, отпадает необходимость в использовании форточной вентиляции. Она полностью заменяется на приточно-вытяжную.
При таком способе вентиляции наружный воздух попадает внутрь теплицы только через камеры смешения воздуха, в которые поступает через специальные клапаны с фильтрами. Принимая во внимание отсутствие форточек и избыточное внутреннее давление, создаваемое высоконапорными центробежными вентиляторами, это практически полностью исключает возможность проникновения вредителей и инфекционных начал снаружи внутрь теплицы. Осуществляя забор наружного воздуха через камеры смешения воздуха, можно комбинировать соотношение объемов холодного воздуха из боковых «карманов», теплого воздуха из производственной зоны и наружного воздуха.
Особо важную роль приточно-вытяжная вентиляция играет в летнее время. В жаркое время года температура воздуха внутри теплицы за счет парникового эффекта обычно превышает температуру наружного воздуха. Справиться с этой проблемой за счет естественного проветривания через форточную вентиляцию практически невозможно. С помощью системы испарительного охлаждения в обычной теплице мы можем понизить температуру воздуха на 3-4°С, в теплице с технологией типа Ultra Clima или SuprimAir – максимум на 5-7°С (имеется в виду в нашей зоне, где влажность наружного воздуха в самый жаркий месяц не опускается ниже 60-50%).
В теплице с приточно-вытяжной вентиляцией появляется возможность, во-первых, просто вытеснить внутренний воздух наружным и, таким образом, выровнять температуру снаружи и внутри теплицы.
При этом нужно понимать, что быстрее всего нагревается воздух именно в боковых «карманах». Поэтому, выдувая перегретый воздух из боковых «карманов», и подавая наружный воздух в производственную зону теплицы, мы имеем возможность вентилировать теплицу очень эффективно (рис. 7).
Кроме того, если использовать калориферы, установленные в камерах смешения воздуха, для охлаждения наружного воздуха, то внутри теплицы температура будет оптимальной даже в самые жаркие летние дни. Для этого на теплообменники калориферов подается холодная вода. Самое простое решение – использовать воду из скважин. Средняя температура воды, поднимаемой из скважин, в большинстве случаев не превышает +10°С. Этого вполне достаточно для того, чтобы эффективно понижать температуру наружного воздуха и на 10, а если надо, то и на большее количество градусов.
Полностью закрытая теплица с технологией управления разделенными воздушными потоками (технология CODA – от англ. Cоntrol Of Devided Airflows) запатентована (патент РФ № 2549087). Закончена разработка проектной документации на конструкцию теплицы под технологию управления разделенными воздушными потоками.
По нашим расчетам одним из наиболее оптимальных вариантов является теплица ангарного типа с шириной пролета 14 м. При такой ширине в теплице помещается 7 полноценных рядов подвесных лотков (центральный ряд – двойной) с проходами вокруг них, что позволяет (с учетом высоты шпалеры в 4 м) использовать любые современные технологии выращивания, включая технологию с приспусканием растений (рис. 8).
Кровля теплицы покрывается двойной пленкой с поддувом между слоями пленки. Боковые стенки – одинарный слой пленки или однослойный профилированный пластик. По коньку – вытяжные вентиляторы. У торцов теплицы по диагонали – камеры смешения воздуха с заборными клапанами для забора воздуха из бокового кармана, из производственной зоны теплицы, снаружи теплицы.
Основной контур обогрева – регистры надпочвенного обогрева. Дополнительный обогрев – с помощью калориферов, размещенных в камерах смешения воздуха.
Горячая вода для регистров надпочвенного обогрева и для калориферов нагрева воздуха в камерах смешения нагревается с помощью котлов пульсирующего горения (из расчета мощности в 200 кВт по теплу на площадь 1000 м 2 ).
Все оборудование работает в автоматическом режиме (разработано специальное программное обеспечение) и управляется отечественной автоматикой по данным датчиков метеопараметров снаружи теплицы и по датчикам температуры и влажности воздуха, содержания СО2 в воздухе внутри теплицы
Предварительные расчеты показывают, что стоимость такой конструкции вместе со стоимостью необходимого оборудования (включая котлы!) в два раза ниже стоимости аналогичной по площади стеклянной блочной теплицы (без стоимости котельной!).
Суммируя вышесказанное, все отличия «полностью закрытой» теплицы с технологией управления разделенными воздушными потоками от «полузакрытой» теплицы с технологией типа Ultra Clima или SuprimAir можно сформулировать следующим образом.
В полностью закрытой теплице:
в камеры смешения забирается охлажденный воздух из нижней части боковых карманов, куда он попадает за счет естественной конвекции (в «полузакрытой» теплице в торцевые коридоры забирается теплый воздух из-под кровли теплицы и загоняется в теплицу через двойные рукава для создания искусственной циркуляции воздуха, т.е. с дополнительными затратами энергии);
циркуляция воздуха создается за счет прямой подачи воздушного потока (без рукавов!) в междурядья (или подлотковое пространство) из камер смешения воздуха, расположенных по диагонали у торцов теплицы, дополняя естественную вертикальную конвекцию вынужденной горизонтальной, разнонаправленной конвекцией вокруг средней шторы теплицы;
в летнее время боковые карманы служат для отвода перегретого воздуха к кровле теплицы для последующего удаления через вытяжную вентиляцию (у «полузакрытой» теплицы такого механизма нет);
в зимнее время боковые карманы 1) не дают охлажденному воздуху напрямую смешиваться с теплым, т.е. защищают растения от стресса; 2) служат для удаления излишней влаги из воздуха путем ее конденсации внутри карманов; 3) создают меньший градиент перепада между внутренней и наружной температурой воздуха, т.е. уменьшают теплопотери;
форточная вентиляция заменена на приточно-вытяжную, что приводит к резкому снижению теплопотерь, защите внутреннего объема теплицы от проникновения в него вредителей и инфекционных начал извне;
наличие камер смешения воздуха позволяет управлять воздушными потоками в теплице, изменяя кратность воздухообмена и климатические параметры воздуха (температура, влажность, содержание СО2), в том числе за счет смешения в необходимых соотношениях воздушных потоков, забираемых из боковых карманов теплицы, из ее производственной зоны, и снаружи теплицы;
отсутствует необходимость в наличии целого ряда инженерных систем: 1) система зашторивания (во-первых, оно просто мешает естественной конвекции воздуха; во-вторых, при отсутствии форточной вентиляции, высокой кратности воздухообмена, при меньшем температурном градиенте за счет боковых карманов потери тепла и так будут минимальными; в-третьих, та же высокая кратность воздухообмена и поддержание оптимальной температуры воздуха решают проблему перегревов и ожогов, т.е. убирают необходимость притенения растений. В результате мы можем более полно использовать приходящую солнечную радиацию); 2) система форточной вентиляции; 3) система распределительных воздуховодов под подвесными лотками; 4) система испарительного охлаждения и увлажнения воздуха; 5) система подачи СО2;
использование комбинированной трубо-воздушной системы отопления, в которой базовую роль выполняют маломощные котлы пульсирующего горения российского производства с КПД до 95%, позволяет обходиться без дорогостоящих котельных, тепломагистралей и баков-аккумуляторов, что, в свою очередь, приводит не только к отсутствию теплопотерь, но и существенному снижению стоимости капитальных затрат и монтажных работ;
боковые шторы, отделяющие боковые карманы, могут использоваться для улучшения освещенности в теплице в утренние и вечерние часы (при правильной ориентации теплицы по сторонам света);
низкая удельная металлоемкость (из-за наличия центральных стоек) конструкции при очень высоких возможных нагрузках.
Все вышеперечисленные преимущества полностью закрытой теплицы с технологией управления разделенными воздушными потоками обеспечивают:
Стоимость строительства – в два раза ниже, чем у стеклянной теплицы блочного типа. Энергоэффективность – минимум на 30-40% выше, чем у стеклянной блочной теплицы.
За счет возможности поддержания идеальных параметров активного микроклимата – потенциал урожайности выше, чем в стеклянной блочной теплице минимум на 15-20%.
Снижение себестоимости производимой продукции минимум на 30%, что приводит к увеличению валовой прибыли в 2,5 раза, и рентабельности – в 3,5 раза.
Шишкин П.В., генеральный директор ООО НПО «КОМПАС»
Олейников В.Н., генеральный директор ООО «Олия»
Источник статьи: http://gavrishprof.ru/info/publications/polnostyu-zakrytaya-teplica-s-tehnologiey-podderzhaniya-parametrov-mikroklimata