Светильники для теплиц розы

#Светокультура роз в теплицах

Выращивания роз в теплицах

Часть 4. Основные параметры микроклимата в теплицах для выращивания роз.
Свет.

Аким Азимович Заурембеков,
кандидат сельскохозяйственных наук.

Основным или самым важным фактором роста растений является свет, точнее фотоситетическая активная радиация (ФАР).
В защищенном грунте это главным «лимитирующий» фактор роста растений.
Световую энергию растения в теплице в основном получают от солнца, а в «темный» период года от искусственного освещения (системы электродосвечивания растений).
В данной работе мы не будем касаться типа светильников и ламп применяемых в установках электродосвечивания. Нам важны показатели по интенсивности света и его продолжительности.

В настоящее время специалистами защищенного грунта используются разные единицы освещенности: Вт/м2 установленной электрической мощности, люксах. Интенсивность светопопока измеряют в Вт/см2, люксах или мкмолях/с-1.
Соотношение единиц таково: 1000 Вт/см2 = 100 000 люкс = 2200 мкмоль/с-1

По данным голландских специалистов, светопропускание теплиц только 75%. Поэтому при наружной освещенности 1000 Вт/см2 внутрь теплицы поступает только 1500 мкмоль/с-1.

На рисунке №5 показана зависимость продуктивности роз от интенсивности светопотока в течение всего года, правда компания не указала сорта роз.

Для производства роз, с коммерческой точки зрения, важен период с ноября по апрель. На рисунке №5 видно, что без искусственного досвечивания продукции просто нет. При этом увеличение интенсивности освещенности повышает продуктивность роз. Особенно это наглядно видно при сравнении количество срезанных цветов в июне-июле по сравнению с декабрем-январем.

Необходимо отметить, что при высокой интенсивности света, продуктивность в летние месяца значительно выше, чем при низкой интенсивности света. Это говорит о сильных и здоровых растениях, у которых процесс фотосинтеза идет круглый год без существенных провалов.

По данным компании Hortilux без досвечивания было получено 336 шт./год/м2. При электродочвечивании 5000 люкс – 464 шт./год/м2 или на 38 % больше, чем без досвечивания. При этом каждое повышение интенсивности светопотока на 5000 люкс приводило к увеличению продуктивности роз на 27 и 21%, соответственно.

Многие исследователи и практики по выращиванию роз по современной технологии считают для нормального развития и плодоношения для роз достаточный уровень естественной освещенность 70 000 люкс. Повышение уровня освещенности свыше 70 000 люкс, не вызывает увеличения продуктивности роз, а наоборот приводит к снижению продуктивности фотосинтеза.

Но, при снижение естественного уровня освещенности на 1% от 70 000 люкс продуктивность роз снижается на 1%.

Кроме уровня освещенности, важными показателями для выращивания роз являются продолжительность светового дня, интенсивность светового потока и суммарный световой итог.
Суммарный световой итог, обычно измеряемый в Дж/см2 важен для назначения поливов, согласно управляющей программы и для понимания общей продуктивности фотосинтеза за сутки, неделю, месяц и т.д.
Интенсивность светопотока , особенно в 5, 6 и 7 световых зонах, может достигать критических величин- до 1000 вт/ см2 и более.

Как отмечает специалист из Нидерландов Ван дер Кнаар, на уровне культуры свет не должен превышать 500 В/м2. Слишком много света приводит к перегреву листа и устьица закрываются, транспирация становиться не продуктивной, а продуктивность фотосинтеза снижается или прекращается вовсе.

Высокая интенсивность света приводит к негативным последствиям для роз:

  • уменьшается длина цветоноса на 1-2 номера,
  • уменьшается размер бутона, как по высоте, так и по диаметру,
  • на красных сортах роз появляется «загар» в виде темно- коричневых или черных полосок на краешках лепестков,
  • увеличивается до критической температура воздуха (30-35°С) в теплице, что приводит к снижению продуктивности фотосинтеза,
  • снижается относительная влажность воздуха в теплице при повышении не продуктивной транспирации растений.

Для уменьшение негативных последствий высокой интенсивности света используют:

  • светоотражающий горизонтальный экран,
  • забеливание кровли специальным составом.

Шторные светоотражающие экраны должны пропускать 70% света.

Применение горизонтального шторного светоотражающего экрана уменьшает интенсивность светопотока, но при этом ухудшается вентиляция теплицы через фрамуги. В любом случае приходится оставлять 20% не закрытой экраном поверхности, что приводит к ожогам части растений и ухудшению качества продукции.

Читайте также:  Прозрачные шторы беседки для дачи

Забеливание кровли специальными составами имеет отрицательное свойство, а именно в пасмурную сухую погоду растения испытывают недостаток естественной световой энергии до такой степени, что иногда включается электрическое освещение растений.

Кроме того, резкие колебания интенсивности светопотока приводят к большим нагрузкам на инженерно-технологические системы, такие как шторный экран, форточная вентиляция, испарительного охлаждения и доувлажнения воздуха, орошения кровли.

Продолжительность светового дня также имеет большое значение. Так в условиях 3-4 световых зон при низкой интенсивности света и длинном дне, растения получают такое же количество световой энергии, как в условиях 6-7 световых зон.

Период продуктивного фотосинтеза увеличивается в этих зонах, повышается коэффициент использования световой энергии и в следствии этого увеличивается продуктивность роз, улучшается качество цветов.

В условиях 6-7 световых зон световой итог в 3000 Дж растения получает в течение 8-10 часов, при этом при интенсивности светопотока 1000 -1500 Вт/м2. В этом случае, большая часть энергии растения направлена на транспирацию воды с целью охлаждения самого себя. Продуктивный фотосинтез при этом отсутствует.

Качество цветов снижается, так же как и общая продуктивность в следствии:

а) высокой интенсивности света и значительных затрат продуктов фотосинтеза растения на охлаждение самого себя,

б) короткого дня, соответственно короткого периода фотосинтеза и суммарно малой продуктивности фотосинтеза.

По мере снижения прихода солнечной энергии (ноябрь-март) или высокой облачности, в теплице включается система элетродосвечивание растений для обеспечения требуемой для роз долготы дня и световой энергией для процесса фотосинтеза.

Электродосвечивание является основной составляющей современной интенсивной технологии выращивания роз. Система электродосвечивания позволяет экономить затраты на тепловую энергии, так как при ее включении температура воздуха в теплице поднимается на 4-6°С. При этом надо учитывать, что при выключении данной системы температура воздуха в теплице снижается на те же 4-6°С и происходит резкое повышение (до критической 95%) относительной влажности воздуха.

Уровень освещенности роз по разным источникам колеблется от 6000 до 20000 люкс. По данным голландских источников для успешного выращивания 15-17 штук с м2 в месяц высококачественных цветов, зимой достаточно 10 000 – 12 000 люкс искусственного освещения, а свыше 15 000 люкс – экономически не оправдано. При этом они отмечают, что освещенность 5000 люкс – только для выживания растений.

Профессор Шульгин И.А. считает, что уровень ФАР в 40 вт/м2 (вне зависимости от источника освещения) способен только поддерживать равновесии между фотосинтезом сахаров и их расходованием на жизнеобеспечение растения, без продуктивной составляющей.

Однако, финские производители роз применяют уровни освещенности 15 000-20 000, а иногда и 25 000 люкс.

Для экономии электроэнергии (доля электроэнергии в структуре себестоимости может достигать 40%) светоотражающий шторный экран должен быть закрыт во время работы системы электродосвечивания. Систему электродосвечивания проектируют из условия включения 50% и 100% установленных ламп, при непременном условии равномерности освещения растений.

Хотя на наш взгляд, более оптимальным было бы включение системы электродосвечивания растений в режиме 25,50,75 и 100% нагрузки и технически это возможно. Увеличение расходов на кабельную продукцию, для указанного варианта управления системой электродосвечивания, с лихвой окупятся экономией электроэнергии, при постоянном возрастании тарифов на электроэнергию.

Временной режим электродосвечивания устанавливается в зимнее время в количестве 20 часов в сутки. Обычно досвечивание включают в 4 часа утра и выключают в 24 часа. Темновая фаза фотосинтеза составляет 4 часа.

В практике эксплуатации, автоматизированная система управления электродосвечиванием учитывает солнечную активность (при достижение 100 или 150 Вт/см2 солнечного света в зависимости от установок управляющей программы), система ? электродосвечивания выключается.

Весной, по мере увеличения интенсивности солнечного света и продолжительности светового дня, время работы системы электродосвечивания сокращается до 16, 14, 10 и т.д. часов. Однако очень полезно проводит досвечивание растений после захода солнца с целью удлинения светового дня для роз, особенно при коротком световом дне. Это приводит к увеличению продуктивности роз и улучшению качества цветов (окраска и величина бутона, длина цветоноса, увеличение вазостойкости).

При переходе от лета к осени продолжительность электродосвечивания в течение суток увеличивается.

Читайте также:  Домик для шмелей для теплиц

Важным показателем является эффективность использования света ( ЭИС) .

Это количество прироста сырой массы растения на единицу света. Обычно ее выражают в г/моль света или г/ количество часов электродоствечивания.

Для разных сортов розы показатели эффективности использования света свои. Так для сорта Аваланж нормой является 2,8г/моль или 20 г/20 часов, Гран при – 2,0 г/моль или 15 г/20 часов, Иллос – 2,4 г/моль или 18 г/20 часов.

Для определения эффективности использования света каждую неделю взвешивают по 5-10 букетов упакованных роз.

Для понимания данных величин приведем расчет-перевод приведенных единиц:

При уровне освещенности 8000 люкс мы получает 100 мкмоль/с-1.

Имея такой уровень освещенности, мы можем получить 7,2 моля/м2 фотосинтетической активной радиации:

100 * 3600/1000000 * 20 = 7,2 моля/м2, где

100 – количество световой энергии в мкмолях/с-1,

3600 –количество секунд в часе,

1000000 – коэффициент перевода мкмоль в моли

Источник статьи: http://growplants36.ru/teplichnye-texnologii/56/-svetokultura-roz-v-teplicah/

Современная светотехника в цветочных теплицах

Прикупец Л. Б., к.т.н., завлаб. Всероссийского института (ВНИСИ) им. , ведущий консультант .

Промышленное цветоводство технологии светокультуры 10 лет сделало качественный скачок. Построено более десятка новых тепличных комбинатов высокотехнологичными теплицами общей площадью более 100 Га. году функционирует около 180 теплиц (ЦВТ) светокультуры, что, примерно ,25 раза превышает площади под светокультурой овощных растений. Сектор ЦВТ является одним энергоемких ( выражении) и, одновременно, самых энергоэффективных среди потребителей электрических световых приборов света. Уровни освещенности достигают 15 клк ( осветительных установках более чем ниже), суточный фотопериод может продолжаться часов «темные» месяцы года, продолжительность освещения составляет около 5000 часов, удельная установленная мощность находится 100–120 Вт/м2.

1. ОСВЕЩЕННОСТЬ

Уровень освещенности является одним элементов технологии светокультуры и, пожалуй, важнейшим параметром осветительной установки. Требования определяет агроном, обеспечивает поставщик светотехнического оборудования служба тепличного комбината эксплуатации.

1 приведены требования освещенности для основных видов цветочных культур, выращиваемых ЦВТ. Эти данные учитывают видовые особенности культур, своеобразными константами; они могут уточняться технологии светокультуры данных, позволяющих детального экономического анализа выбрать параметры искусственного освещения, обеспечивающие желаемый уровень рентабельности климатических условий ЦВТ.

Укажем, что для основной цветочной культуры , розы, отчетливо просматривается тенденция постепенного увеличения уровня освещенности. , построенных гг. она едва достигает 9 клк, затем был преодалён уровень 12 клк, сейчас проекты уже может закладываться уровень 15 клк. Весьма важным параметром искусственного климата является суточный фотопериод, который достигает 20 часов, случаях величины. Общая продолжительность искусственного освещения при светокультуре розы определяется климатом задачами достигать 5000 часов, цветок затрачивается *.

Уровень освещенности является исходным параметром для светотехнического расчёта осветительной установки ЦВТ, который для выбранного типа светового прибора выполняется, , DIALux. расчёта определяется распределение освещенности площади коэффициентом неравномерности расположения светильников конструкции теплицы ценоза. . 1 примера, приведено распределение освещенности компьютерного расчёта.

www.galad.ru «Тепличное») начал функционировать «калькулятор» для ориентировочного расчета осветительной установки при варьировании размера теплицы, уровня освещенности подвеса светильников. Выбрав тип светильника мощностью лампы кривой силы света пользователь может быстро получить необходимые расчётные данные (например, ориентировочное количество светильников, потребляемая мощность .д.) сформулировать техническое задание светотехникам для проектирования осветительной установки.

освещение использовалось лишь короткое время отделениях овощных теплиц, освещенности 6–7 клк.

светокультуры искусственное освещение используется, практически, всего периода вегетации месяцы обеспечивает % всей световой энергии, получаемой растением ( теплицах этот показатель может превысить 90%). «досветке» искусственным освещением может идти речь? Скорее наоборот, естественный свет является «досветкой»!

Исправляя эту терминологическую неточность, писать случае о «искусственном освещении при светокультуре растений».

Рис 2. Пример расчета калькулятора расчёта освещения теплиц, представленного www.galad.ru

Систему электрического освещения часто называют «системой досвечивания» или просто «досветкой». Эти термины существуют уже несколько десятилетий , когда искусственное

2. ИСТОЧНИКИ СВЕТА

Основные вопросы, связанные характеристиками натриевых ламп высокого давления (НЛВД), используемых , рассмотрены в [1]. , затронем некоторые дополнительные вопросы, связанные источников света (ламп).

Среди вопрос целесообразном сроке службы, требующем групповой замены ламп. Физический срок службы достигает 40 тыс.час, однако эксплуатации поток, определяющий меру эффективности, постепенно снижается. Как показали наши прямые испытания, проводимые PlantaStar 600W/400V ф. Озгат (Германия) (рис. 3), тыс. часам, что соответствует, примерно, 4 годам эксплуатации, величина спада достигает 20%. ЦВТ уровнем освещенности 12 клк это означает снижение ,6 клк.

Читайте также:  Ухаживать за огурцами грядке

Попробуем оценить, как это скажется продукции . Для этого воспользуемся «световой кривой» голландского происхождения, описывающей зависимость продуктивности освещенности при светокультуре розы (рис. 4). Кривая, конечно, может рассматриваться, как ориентировочная, имеющая «методическое» значение, поскольку, продуктивность зависит факторов и, числе, растения. Тем , вполне возможным использовать эту зависимость для количественных оценок влияния спада светового потока ламп и, соответственно, освещенности выхода цветка.

. 4 легко видеть, что снижение % освещенности уровня 12 клк 9,6 клк может привести выхода цветка /м2.

При средней оптовой цене цветка г. это приведет выручки Соответствующая оценка стоимости затрат 1600 ламп мощностью 600 Вт, обеспечивающих освещенность 12 клк, 2015 года составит: Сэ = 1600 руб =

Очевидно, своевременная замена ламп мощностью 600 4 -х лет эксплуатации обеспечит доход

Таким образом,4годаможетсчитаться экономически целесообразным сроком службы для НЛВД 600 , которого лампы следует заменить.

Вопрос замены ламп мощностью 1000 исследованиях. время данными светового потока ламп этого типа условиях. время, случае, ожидать заметных отличий светового потока для ламп 600 Вт. меньшего % необходимого количества ламп 1000 Вт, даже заметно более высокой стоимости этого источника света, сохраненная выручка при замене ламп после лет эксплуатации будет Га.

3. ИЗМЕРЕНИЯ ИЗЛУЧЕНИЯ

писали ранее [2], что , где используются только НЛВД, световые параметры (световой поток отдача) вполне характеризуют эффективность источника света. Тем , становится «модным» оперировать таким понятием как «микромоль». , презентациях, рекламных проспектах можно встретить такие числа как «, 105,220 .д. мкмоль». Что имеют авторы, можно только догадываться. Само слово «мкмоль» означает просто количество частиц , оно может характеризовать конкретный технологический процесс.

Использование понятия «мкмоль» означает введение новой метрологической фотонной фотосинтезной системы (ФФС) величин. Отметим, что стране ФФС , для измерений приборы измерений. Однако, использованием проектах «потенциальных носителей» светодиодных излучателей, измерение излучения которых световых величин невозможно, этой проблемой придется заниматься. Возвращаясь , приведенному выше, отметим, что авторы вероятно имеют фотонную фотосинтезную облученность, значение которой может быть записано «мкмоль/(м2*с)>>.

ФФС можно измерять излучение его светодиодных излучателей. . 2 излучательные параметры НЛВД системах: световой .

4. СВЕТИЛЬНИКИ

цветочных теплицах, , используются светильники мощностью 600 аппаратами (ПРА) отечественного производства. теплицах можно ещё встретить светильники мощностью 400 Вт, комбинатахуже используются светильники мощностью 1000 Вт.

комбинатов установлены светильники, выпускаемые заводом ОАО „КЭТЗ“ под брендом GALAD. Номенклатура тепличных светильников завода хорошо известна более 20 типов изделий НЛВД лампами ReFlux.

Среди новинок последнего времени светильник класса Premium ПРА РТд 1000/400 НЛВД PlantaStar 1000W фирмы Osram (Германия). г. было произведено более 25 тыс. шт. приборов этого типа.

г. начато производство нового светильника типа подключением. Этот светильник разработан меры, способствующей снижению зависимости импортных радиоэлементов повышенной надежностью, электронными ПРА.

Существует модификация этого светильника сплавным регулированием мощности потока.

. 5 фото новых светильников GALAD, . фрагмент осветительной установки комбинате „Мир цветов“ (Респ. Мордовия).

как теплицах, активно предлагается использовать светодиодные светильники. теплицах пилотных проектов проводятся эксперименты осветительными установками (НЛВД + светодиоды). Светодиодные облучатели спектром (рис. 7) линейных модулей длиной ,5 розы, создавая дополнительное боковое освещение.

Устойчивого эффекта позволяющего зафиксировать основные технологические параметры осветительной установки, обеспечивающие определенный положительный эффект, насколько нам известно, пока .

Что касается замены „верхних“ натриевых светильников , помимо традиционного ценового фактора, придется решать ещё несколько вопросов, раньше как-. 1. Светодиодный облучатель достаточно тяжелый световой прибор. Для соответствующих мощностей его вес превышает вес светильников ПРА. Количественные данные приведены . 8. Таким образом, желающим использовать светодиодные светильники необходимо быть готовыми нагрузке . 2. спектр светодиодных облучателей, сам , для зрения человека. Светотехники всего мира озабочены, так называемой, „синей угрозой“ белых светодиодных светильников, используемых для общего освещения, доля синего излучения раз меньше, чем светильниках. 3. Наконец, стоит подумать, насколько приемлемым для работы агронома, случае, окажется существенное искажение цветопередачи теплице.

Несмотря недостатки, придется считаться, светодиодные светильники , бесспорно, найдут свою нишу ЦВТ.

Список литературы: 1. . Свет . „Цветочные технологии“, № 18, 2011, стр. 12–15. 2. . Светокультура. Лампы светят. Когда менять?». Теплицы России, № 1, 2015, стр. 52–53.

Источник статьи: http://galad.ru/helpful/articles/748887/

Оцените статью