Топ-35: Крупнейшие тепличные комплексы России
Текст: Анастасия Кирьянова
Российское эмбарго стало толчком для развития отечественного сельского хозяйства, которое за последнее время демонстрирует уверенные темпы роста. Повышаются объемы производства, сокращается импорт продовольствия, открываются новые предприятия, растет привлекательность многих отраслей, в том числе защищенного грунта.
По данным Союза производителей овощей, прирост тепличных площадей в прошлом году составил 154 га, что соответствует аналогичному показателю за 2014 год. То есть каждый год в нашей стране открываются и начинают свою работу новые предприятия по выращиванию овощной продукции в защищенном грунте. В связи с этим редакция «Журнала Агробизнес» составила собственный рейтинг крупнейших действующих тепличных комплексов России по занимаемой площади. Список составлялся на основе данных Ассоциации «Теплицы России» и «Яндекс.Карт». Всего на конец 2015 года в нашей стране насчитывалось 181 тепличное предприятие, среди которых были как недавно открывшиеся, так и комплексы, существующие уже на протяжении нескольких десятков лет. Всего в список вошло 35 компаний.
На вершине рейтинга оказался тепличный комплекс ЗАО «Агрокомбинат “Южный”» в Карачаево-Черкесской Республике, площадь которого насчитывает 100 га, а валовый сбор урожая за прошлый год — 33 тыс. т. Новый собственник этого тепличного комплекса в начале лета заявил о ближайшей полной модернизации предприятия, поэтому в будущем можно ожидать значительного увеличения объемов сбора урожая на этом агрокомбинате. Второе место рейтинга занимает ООО ТК «Зеленая линия» (на фото) — крупнейший в Краснодарском крае тепличный комплекс, принадлежащий компании ОАО «Магнит». Объемы сбора неплохие — 29480 т с 83 га в прошлом году, при этом вся произведенная овощная продукция поступает в розничные магазины нескольких регионов страны.
На третьем месте расположился ООО «Агрокомбинат “Московский”», валовый сбор продукции которого в прошлом году составил 25,4 тыс. т с площади 58 га. Разрыв по площади между лидерами существенный, однако компании, занявшие первое и второе место, имеют близкие показатели по сбору овощной продукции. Закрывает первую десятку рейтинга предприятие ГУП РМ «Тепличное» из Республики Мордовии, расположенное на площади 26,7 га.
В рейтинг попали не только предприятия, находящиеся в южных регионах страны, для которых характерны теплые и солнечные дни. Многие комплексы, к примеру, ЗАО «Агрофирма “Ольдеевская”», ООО «Агрокомбинат “Московский”», СПК «Воронежский тепличный комбинат» и другие, расположены в Центральном ФО, а некоторые — в Уральском ФО и даже в Сибирском ФО. Из всего списка можно отметить ООО Агрокомплекс «Чурилово» и ООО ТК «Новосибирский». При меньшей по сравнению с предшественниками по рейтингу площади у этих агрокомбинатов значительно больший объем валовой продукции. На первом предприятии в прошлом году с 18,5 га собрали 13,1 тыс. т овощей, а на втором — те же 13,1 тыс. т с 16,2 га, несмотря на то, что оба комплекса находятся в регионах с холодным климатом. Подобные высокие показатели обусловлены постоянной работой над повышением урожайности. В комплексах внедрена на всей площади голландская технология выращивания овощей способом малообъемной гидропоники с применением систем светокультур, для которых используются новейшие гибриды. При этом период возделывания овощной продукции практически круглогодичный. Оба предприятия имеют собственные газопоршневые установки, обеспечивающие тепличные блоки круглый год бесперебойным теплом и электроэнергией. Именно подобные решения в тепличном бизнесе являются гарантией высоких урожаев, а не большие площади, место расположения комплекса и климатические условия региона. Многие тепличные комплексы страны, особенно уже давно действующие, постепенно переходят на такие технологии, поэтому в будущем можно ожидать значительного роста производства тепличной овощной продукции в нашей стране.
Табл. 1. Крупнейшие по площади тепличные предприятия России
Источник статьи: http://agbz.ru/articles/top-35_-krupneyshie-teplichnyie-kompleksyi-rossii-/
К вопросу классификации теплиц
Современные теплицы и тепличные комбинаты характеризуются значительным разнообразием конструкций, инженерных систем, технологий выращивания, источников энергоресурсов и т.д. Действующие нормативные документы рассматривают основные особенности непосредственно теплиц [1], а также технологий их эксплуатации [2, 3]. Разные типы теплиц рассматривали и пытались упорядочить ряд авторов. Так, профессор Брызгалов В. А. (1983) [4] отмечает, что культивационные сооружения, относимые к […]
Современные теплицы и тепличные комбинаты характеризуются значительным разнообразием конструкций, инженерных систем, технологий выращивания, источников энергоресурсов и т.д.
Действующие нормативные документы рассматривают основные особенности непосредственно теплиц [1], а также технологий их эксплуатации [2, 3].
Разные типы теплиц рассматривали и пытались упорядочить ряд авторов. Так, профессор Брызгалов В. А. (1983) [4] отмечает, что культивационные сооружения, относимые к теплицам, могут иметь два типа кровли по светопропусканию. При непрозрачных кровлях рассматриваются здания шампиньонниц, а также другие специальные сооружения, которые не требуют света, например, для выращивания салатного цикория. В том числе камерные теплицы с электросветокультурой для районов Крайнего Севера. Второй тип кровли – прозрачные, и характерен он непосредственно для теплиц.
Номенклатура теплиц и тепличных комбинатов распределяется по назначению (овощные, рассадные, рассадно-овощные), срокам использования (круглогодичного и весенне-летне-осеннего), планировочному решению (однопролетные и многопролетные), а также соответствующим размерам и их площадей [5].
Названные выше материалы базируются в основном на опыте и знаниях в защищенном грунте периода конца 90-х – начала 2000-х годов.
Однако, известно, что в последние десятилетия в практику теплицестроения внедрены ряд новых оригинальных технологических и конструктивных решений. В этой связи целесообразно рассмотреть общие подходы к современному распределению по типам (типированию) теплиц.
рис.1
Предлагаемые нами критерии классификации теплиц приведены на рис.1, где рассмотрены основные блоки-условия, которые отражают особенности изготовления, проектирования и строительства теплиц. При этом первым основным вопросом рассматривается технология выращивания растений в теплицах (блок II). Эти вопросы напрямую определяют выбор архитектурных и объемно-планировочных решений (блок III) и конструктивных решений (блок IV). Также технология основного промышленного производства определяет наполнение (начинку) инженерными и технологическими системами (блок V), их параметры и характеристики.
Решение блоков II, III, IV, и V определяют основной состав проектно-сметной документации. На этапе проектирования также рассматриваются отдельные вопросы организации и технологии строительства. Значимость последних вопросов предопределило выделение их в отдельный блок VI.
Рассмотрим исполнение и состав отдельных блоков по классификационным признакам.
Блок I «Типы теплиц» предлагается в составе четырех основных составляющих (рис.2).
рис.2
По назначению рассматриваются теплицы производственные (основное назначение): это промышленные теплицы разной площади (обычно 3 га и более) для массового выращивания овощей, цветов и проч. и блок фермерских теплиц площадью 0,25-2,0 га. Причем, последние могут устраиваться на действующих промышленных площадках крупных производственных предприятий.
Отдельно выделены теплицы для проведения научно-исследовательских работ. Это селекционные и репродукционные теплицы, а также фитотронно-тепличные комплексы. Под руководством и непосредственном участии авторов (МНВП «Инжтехбуд»), созданы ряд таких комплексов для аграрных исследовательских центров Академии наук Республики Беларусь в Минской области (г. Несвиж, г. Жодино, пос. Самохваловичи).
К специальным (оригинальным) теплицам следует отнести оранжереи, вегетарии (Иванова А.В., био, китайский и др.), зимние сады, торговые центры (Greenshop), в том числе проекты авторов (МНВП «Инжтехбуд») в г. Минск (United Company) и в г. Киев (ООО «Эдельвейс») и др.
В настоящее время по времени разработки, конструктивным и технологическим решениям все теплицы относят к одному из шести поколений. Первые два типа (двускатные стеллажные, ангарные) представляют незначительный интерес. Практически выводят из обращения теплицы третьего поколения, так называемые антрацитовские (по названию г. Антрацит в Луганской области, где они производились).
Наиболее распространенными сегодня являются теплицы четвертого поколения (типа «Venlo»). За последние 15-20 лет именно такие теплицы массово строили и продолжают строить в странах Восточной Европы.
Теплицы пятого поколения можно назвать глубоко усовершенствованной разновидностью теплиц типа «Venlo» [6]. Фирмы-производители их называют каждый по-своему: UltraClima (Kubо), ModulAir (Van der Hoeven), Eco-Greenhouse (KGP), OptimAir (Richel), SuprimAir (Certhon) и др.
Такие теплицы (отдельные образцы) построены в Европе и Северной Америке, а также в России (ТК «Липецк-Агро», г. Данков, Липецкой области).
Из открытой печати также известно о теоретических проработках теплиц шестого поколения, так называемых полностью закрытых теплиц [7].
Активное развитие строительства новых теплиц и тепличных комбинатов не снимает с повестки дня совершенствование ранее построенных теплиц (подблок I.3). Это может быть реконструкция, капитальный ремонт и модернизация.
Отдельно рассматриваются теплицы для специфических районов и условий эксплуатации (подблок I.4). Это мобильные и сборно-разборные теплицы площадью до 3 га для работы в местах наличия локальных и, возможно, временных, возобновляемых запасов энергии – биогаз, дрова, термальные воды и др. [8].
Основная задача теплицы – создание условий эффективной жизнедеятельности растений. Эта цель достигается в том числе разными архитектурно-планировочными решениями (рис.3).
рис.3
По разрезу теплицы рассматриваем как отдельно-стоящие (укрытия, туннели и ангарные), а также теплицы, которые сформированы (объединены) в блоки.
При этом в составе блоков теплиц могут быть несколько отделений.
На площадке строительства блоки и отдельно-стоящие теплицы размещаются, как правило, на одном уровне (общей планировочной отметке). Допускается [1, 2] размещение теплиц в нескольких уровнях, в т. ч. с устройством террас. При этом разность высот (например, в проекте авторов (МНВП «Инжтехбуд») ТК «DF- Agro площадью 10 га» предварительный перепад высот площадки составлял по геодезической съемке 18,5 м) решается устройством откосов, подпорных стен разного конструктивного исполнения и др.
В состав тепличных комбинатов кроме непосредственно теплиц входят здания и сооружения системы жизнеобеспечения (котельные, энергетические центры (включая ГПУ), сервисные зоны и др.). Варианты их решений, в первую очередь, компоновка, представлена в подблоке III.6.
Наиболее широкими разновидностями характеризуются конструктивные решения теплиц (блок IV). Самым используемым материалом в настоящее время являются стальные оцинкованные конструкции. Встречаются также элементы из обработанной другими способами (покраска, анодирование и др.) стали, дерево и пластик.
Распространенным решением фундаментов теплиц под рядовые и связевые стойки-колонны являются буронабивные монолитные сваи с малоразмерной серийной микросваей (как правило, бетонные для стеклянных теплиц и бетонные или металлические для пленочных теплиц), которая «втапливается» в бетонную смесь [9].
Специфическими, реже применяемыми решениями могут быть винтовые сваи из металла, забивные (пирамидальные, прямоугольные и др.) сваи. Кроме того, для районов Крайнего Севера с вечной мерзлотой предусматривается устройство фундаментов на специальной плите-ростверке с вентилируемым подпольем [1].
Ленточный фундамент теплиц, или цоколь, выполняется, как правило, в монолитном бетоне с соответствующим армированием и утеплением. Опирается такой конструктив на буронабивные сваи, которые устраиваются ниже глубины промерзания грунта. Армирование сваи и цоколя совместное. В отдельных случаях, в зависимости от организационных, инженерно-геологических и других условий, применяют сборные железобетонные плиты, высокий ростверк (без свай) и т.д.
Тепличные двери и ворота (подблок IV.4) выполняются в едином блоке поставки в унификации с несущими и ограждающими конструкциями теплиц.
В зависимости от конструктивного исполнения (решения) теплицы решаются вопросы вентиляции в кровле и в боковых стенах. Для теплиц 5-го поколения предусматривают специальную вентиляционную камеру, располагаемую вдоль пролетов теплиц. Дополнительные системы вентиляторов забирают воздух из теплицы, доводят их до проектного качества (в том числе охлаждают с использованием так называемых «мокрых экранов») и возвращают в блок с растениями. При этом конструктив (количество) форточной вентиляции значительно меньше, чем у теплиц типа «Venlo».
Технологические особенности эксплуатации и строительства теплиц и тепличных комбинатов будут рассматриваться дополнительно.
Т.Л. ЧЕБАНОВ — инженер Киевского национального университета строительства и архитектуры;
В.Б. БЕРЕЗА — инженер МНВП «Инжтехбуд», Украина;
Л.С. ЧЕБАНОВ — ст. научн. сотрудник Киевского национального университета строительства и архитектуры, канд. техн. наук;
Д.А. РОМАНЬКОВ — доцент Белорусской государственной сельскохозяйственной академии , канд. с.-х. наук.
- Свод правил СП 107.13330.2012. Теплицы и парники. Актуализированная редакция СНиП 2.10.04-85. – М.: Минрегионразвития РФ, 2012. – 18 с.
- Нормы технологического проектирования теплиц и тепличных комбинатов для выращивания овощей и рассады. НТП 10-95. – М.: Минсельхозпрод РФ, 1995. – 85 с.
- Нормы технологического проектирования селекционных комплексов и репродукционных теплиц. НТП-АПК 1.10.09.001 – 02. М.: Минсельхоз РФ, 2002. – 29 с.
- Овощеводство защищенного грунта / В.А. Брызгалов, В.Е. Советкина, Н.И. Савинова; Под ред. В.А. Брызгалова. – Л.: Колос, 1983. – 352 с.
- Г.Г. Шишко, В.А. Потапов, Л.Т. Сулима, Л.С. Чебанов. Теплицы и тепличные хозяйства: Справочник. Под ред. Г.Г Шишко – К.: Урожай, 1993. – 424 с.
- Соколов Н.С. Технологии пятого поколения. – Теплицы России. – 2015, №1. – с.22-24.
- П.В. Шишкин, В.О. Олейников. Полностью закрытая теплица с технологией поддержания параметров микроклимата на основе управления разделенными воздушными потоками (технология CODA- Control Of Devided Airflows). – Теплицы России. – 2016, №2. – с.15-20.
- Чебанов Т.Л., Рябощук Ю.А., Малеванный В.Ю. Область рационального применения технологии строительства мобильных теплиц. – К.: Строительное производство, 2017, №62/1. – с. 121-127.
- Чебанов С.Л., Береза В.Б., Чебанов Л.С. Технология монтажа свайного поля теплиц. – Теплицы России, 2014, №2. – с.21-27.
Источник статьи: http://rusteplica.ru/k-voprosu-klassifikacii-teplic/