Как рассчитать автополив газона?
Инженерные конструкции всегда начинаются с четко выверенного и просчитанного плана. Проектирование автоматического полива не исключение. После примерного составления схемы, начинается самый важный этап — расчет автополива газона. От его правильности зависит выбор всех материалов и успех мероприятия в целом. Разберем, какие нужно учесть моменты, чтобы создать не просто рабочую, но и оптимизированную систему.
Проектные расчеты
Первым этапом будет общий расчет системы полива газона. Онлайн сервисы не дадут вам полной картины, так что придется все делать вручную.
В первую очередь, потребуется перенос схемы автополива на ваш участок для учета всех нужных элементов. Для начала необходимо поделить его на зоны полива (их также называют линиями и магистралями). Такое деление лишь предварительное, точный охват зон будет понятен только после гидравлического расчета. Линии полива будут включаться поочередно, учитывайте это при зонировании.
На каждой из магистралей размещаются дождеватели. Расстояние между ними будет равно радиусу полива. Такая схема обусловлена спецификой работы дождевателей — чем дальше к краю поливной зоны, тем сильнее увлажнение. Если это правило нарушить, орошение не будет равномерным и вам гарантированы сухие пятна на газоне. Существует две стандартные схемы размещения спринклеров — треугольник и квадрат.
В целом, зонировать участок необходимо для уменьшения протяженности трубопровода и снижения необходимого давления в нем. Эта манипуляция актуальна только в том случае, если ваш участок превышает 8 соток. Для небольших территорий такое деление не потребуется, в нашем блоге есть описание упрощенного варианта — как раз для них.
Следующий этап — выбор оросителей. Существует два основных типа: роторные и статические.
- роторные дождеватели вращаются, выбрасывая одну струю. Они более экономичны, их радиус полива довольно велик, и на больших открытых территориях они будут самым экономичным и логичным решением. Единственный минус в том, что они подвержены поломкам из-за наличия подвижных частей;
- статические дождеватели выглядят как небольшие фонтаны, и распространяют влагу на меньшие расстояния, чем роторы. Будут оптимальным решением для узких участков и небольших зон полива, таких как, например, клумба.
Важно помнить, что вы можете комбинировать самые разные оросители, в зависимости от характера растительности и размеров участков для полива. Обязательно запишите расход воды для каждого спринклера — это пригодится позже.
На третьем этапе нас ждет самое сложное — расчет воды для полива газона. Он начинается с подсчета суммарного расхода всех дождевателей на участке в литрах в минуту. Расход роторов потребуется считать отдельно, так как у них иная производительность. После того, как мы получили точный общий расход воды, нас ждет самое сложное.
Гидравлический расчет
Необходимо верно подобрать трубы, насос, и объем накопительной емкости, если вы решили использовать ее в схеме. Чтобы это сделать, потребуется выполнить гидравлический расчет.
Для начала потребуется определение рабочего давления на одну зону орошения. Для этого нужна таблица потери напора в трубах того типа, что вы решили использовать. Например, подобная для материала ПВХ.
Вам необходимо сопоставить диаметр, скорость течения жидкости и потери давления на 100 м.
Например, наиболее подходящий диаметр для центральных труб на участке в один гектар — около 40 мм. На ней могут быть использованы электромагнитные клапаны на дюйм, которые стоят недорого, к тому же все фитинги для будут также довольно дешевы. Посмотрите примерный объем воды, проходящей по подобной трубе при скорость 1 м/сек в таблице. Для ПНД труб это значение будет равно 50 л/мин, следовательно, все поливочные линии должны иметь такую суммарную производительность.
Далее объедините точки орошения, которые вы расставили на участке, в группы по 50 л/мин, и скорректируйте количество зон. Теперь можно подсчитать необходимое число электромагнитных клапанов. Исходя из их количества подбирается контроллер.
Если, как в нашем примере, через клапан идет 50 литров в минуту, логично разделить им линию на две, разводя поток равные по 25 литров в минуту. Следовательно, диаметр труб нужно подбирать уже под это давление, и они будут, разумеется, меньше.
Когда дождеватели поднимаются в рабочую позицию, общий поток в трубах становится меньше, и для сохранение постоянной скорости диаметр последующих труб нужно уменьшить. Не забывайте обращать внимание на потерю напора в потоке, идущем от спринклера к спринклеру. В крайнюю точку полива нужно довести то давление, что требуется последнему из них. Чуть больший напор, при этом, проблемой не является.
Таким образом, сопоставив эти данные, вы получите оптимальное значение рабочего давления в начале центральной трубы, которая подключается к насосу.
Напор, необходимый для полива в одной ветке, с учетом напора на центральную трубу — это то значение, по которому следует выбирать насос. Объем емкости же считается, исходя из расхода воды на одну зону, плюс небольшой запас.
Помните, что гидравлический расчет — непростая задача. Перепроверьте все данные перед закупкой материалов, или обратитесь к специалисту для получения наиболее точного результата.
Источник статьи: http://shop-dvor.ru/blog/kak-rasschitat-avtopoliv-gazona/
Проектируем систему полива сами
Для начала проектирования системы полива нам будет необходим план участка. Как правило, план участка выполняется в масштабе 1:100, 1:200. На нём необходимо будет указать как можно точнее месторасположение существующих и планируемых объектов (сооружение, деревья и кустарники, подпорные стенки). Если участок имеет сложный рельеф, то желательно отметить перепады высот. Необходимо определить на участке места, где будет работать система автополива, капельного полива, предусмотреть отводы воды (гидранты) для ухода за труднодоступными территориями.
Возьмем, в качестве примера, проект по благоустройству участка. Последовательно рассмотрим все действия.
Рис.1 Проект участка.
На участке необходимо сделать автоматический полив газона, цветников, предусмотреть гидранты.
Выбор места расположения дождевателей и зоны их покрытия.
Для полива будем использовать МР ротаторы. Радиус полива для ротаторных дождевателей колеблется от 4 до 9 метров:
Также они отличаются регулировкой сектора полива:
Теперь расставим дождеватели по плану. Начинать лучше с отмостки около дома и др. строений, а также по границе участка и в углах. В идеале должно быть 100% перекрытия (т.е. любая точка участка должна поливаться 2-мя дождевателями). После этого смотрим какие зоны не поливаются (или поливаются недостаточно) и добавляем дождеватели.
Рассчитаем расход воды, используя данные из таблицы 1.
Таблица 1. Расход ротаторов в зависимости от радиуса действия и сектора полива.
(данные приводятся при рабочем давлении 3 бар.)
На чертеже расставим данные согласно таблице.
Общий расход воды на участок будет равен 5,224 м3/час.
Для стабильной работы насоса необходимо, чтобы производительность разных зон отличалась не более, чем на 25%.
Разобьем участок на 2 зоны. Расход самой большой зоны 2,676 м3/час, самой маленькой 2,548 м3/час.
Теперь можно спроектировать прокладку трубы и установку клапанов.
При подборе диаметра труб учитывается зависимость между скоростью движения воды, гидравлическими потерями в трубопроводе и мощностью насосной станции. Рекомендуемая расчетная скорость воды в трубопроводе из полимерных материалов 2,5-3,0 м/с.
Ниже приведена таблица соответствия скорости и расхода. По ней Вы можете определить необходимый диаметр труб.
диаметр трубы нд, мм | скорость воды, м/с | расход воды, м.куб./час |
25 | 2,5 — 3,0 | 2,94 — 3,53 |
32 | 2,5 — 3,0 | 4,43 — 5,29 |
40 | 2,5 — 3,0 | 7,47 — 8,96 |
50 | 2,5 — 3,0 | 11,7 — 14,0 |
63 | 2,5 — 3,0 | 18,7 — 22,32 |
Нам достаточно трубы диаметром 32 мм.
Выбираем место для установки емкости, насосного оборудования и контроллера.
Вода из скважины (местного водопровода или др.) поступает в накопительную емкость (уровень регулируется поплавковым клапаном) , откуда через насосную станцию она нагнетается в магистральную трубу.
Магистральная труба (на рисунке черным цветом) находится всегда под давлением. К ней подсоединяются ветки для полива участка (Кран1, Кран2) и ветка гидрантов (Кран3), на рисунке желтым цветом. Ветки ( на рисунке красным и синим цветом) включаются только в определенное (заданное) время. На них монтируются дождеватели.
Кран1 и Кран2 — электромагнитные клапаны, открываются в заданное время для полива определенного участка.
Гидранты размещены в разных частях участка. Они подсоединены к магистральной трубе через Кран3 (который всегда открыт), соответственно они всегда под давлением. Гидрант расположенный на фасаде может использоваться для мойки брусчатки, машины, а также для полива небольших клумб. Гидрант в огороде незаменим при поливе огорода, там же будет возможность сделать капельный полив.
Подбор насосного оборудования.
Для правильного подбора насосного оборудования необходимо сделать гидравлический расчет. Его целью является определение расхода и напора насосной станции. Расчет производится по самой невыгодной трассе трубопроводов, подводящих воду к самому удаленному от насосной станции дождевателю или дождевателю расположенному на самой высокой отметке.
В нашем проекте это 1-я ветка.
Расход воды, проходящей через 13 дождевателей составит 2,676 м3/ч.
Скорость потока в трубе составит: V = Q/F, (м/с),
Q – расход воды на канал, м3/с;
F – площадь внутреннего сечения трубы, м,
F = π * D2/4 = 3,14 * 0,0252/4 = 0,00049 м,
где D – внутренний диаметр трубы, м.
V = 0,0011/0,00049 = 2,24 м/с
Гидравлические потери на канал (Нпк) сложатся из сумм потерь по длине и потерь на местные сопротивления, т.е.:
Потери по длине.
Потери по длине вычисляются по формуле Дарси:
Нд = ξ * L * V2 / dвн * 2 * g, (м)
Вы можете использовать таблицу потерь напора. (см. Таблицу потерь напора).
Потери напора в трубопроводах ПНД по ГОСТ18599,2001 PN10 (в метрах на 100 метров прямого трубопровода) | ||||
диаметр, мм | ||||
25 | 32 | 40 | 50 | |
0,5 | 1,29 | 0,33 | ||
1,0 | 4,27 | 1,09 | 0,36 | |
1,5 | 8,67 | 2,21 | 0,73 | |
2,0 | 14,37 | 3,66 | 1,2 | 0,42 |
2,5 | 21,3 | 5,41 | 1,77 | 0,62 |
3,0 | 29,41 | 7,46 | 2,44 | 0,85 |
3,5 | 38,65 | 9,8 | 3,2 | 1,11 |
4,0 | 49,01 | 12,41 | 4,06 | 1,41 |
4,5 | 15,29 | 4,99 | 1,73 | |
5,0 | 18,43 | 6,02 | 2,09 | |
5,5 | 21,84 | 7,12 | 2,47 | |
6,0 | 25,5 | 8,31 | 2,88 | |
6,5 | 29,41 | 9,58 | 3,32 | |
7,0 | 33,56 | 10,93 | 3,79 | |
7,5 | 37,97 | 12,36 | 4,28 | |
8,0 | 42,61 | 13,87 | 4,8 | |
8,5 | 47,49 | 15,45 | 5,35 | |
9,0 | 17,11 | 5,92 | ||
9,5 | 18,85 | 6,52 | ||
10,0 | 20,66 | 7,14 |
При нашем расходе 2,676 м3/час, потери напора в трубопроводе длиной 100 м составят 5,41 метров.
Длина ветки до дальнего дождевателя 30 метров, соответственно потери напора по длине составят 1,8 метра.
Потери на местные сопротивления.
Потери на местные сопротивления вычисляются по формуле Вейсбаха:
Нм = ξм * V2/2 * g, (м)
И в свою очередь разделим их на:
- потери при повороте;
- потери при ответвлении;
- потери в запорной арматуре.
При поворотах значение коэффициента местного сопротивления ξм, в зависимости от угла поворота α, принимаем по таблице:
α | 30° | 40° | 50° | 60° | 70° | 80° | 90° |
ξм | 0,2 | 0,2 | 0,4 | 0,55 | 0,7 | 0,9 | 1,1 |
На ветке 3 поворота на угол 90°, принимаем коэффициент местного сопротивления равным 1,1, тогда: Нп = 3 * 1,1 * 2,242/(2 * 9,81) = 0,84 м
При ответвлениях значение коэффициент местного сопротивления ξм принимается в зависимости от угла подсоединения ответвления.
У нас имеется 2 ответвления со значением коэффициента местного сопротивления ξм=1,5, следовательно,
— Нотв = 2 * 1,5 * 2,242/(2 * 9,81) = 0,34 м
Поскольку диаметр трубопровода расчетного канала 32 мм, по каталогу Hunter подбираем электромагнитный клапан диаметром 1″. Потери напора в клапане принимаем по графику, приведенному в каталоге.
Для нашего расхода они составят 1,3 метра.
Нпк = 1,8 + 0,84 + 0,34 + 2 = 4,98 м.
Аналогично рассчитываем потери на напорной магистрали (Нпм) от насосного узла до колодца №1. Они составят Нпм=0,54 метров.
Суммарное значение потерь на участке от насосного узла до наиболее удаленного дождевателя составит:
ΣНп = 4,98+ 0,54 = 5,52 м
Рассчитаем необходимое давление, которое должен выдавать насос на выходе:
Нн = Нг + Нп + Нд, (м),
Нг – максимальный геометрический перепад между отметкой оси насоса и дождевателем;
Нп — гидравлические потери в трубопроводе;
Нд — давление, необходимое для работы дождевателя.
Нн = 1,0 + 10,61 + 30 = 36,52 м = 3,7 атм.
По каталогу оборудования подбираем насос. При подаче 2,7 м3/час, напор на выходе из насоса должен быть не менее 3,6 атм.
Если у Вас уже существует насосный узел или поселковый водопровод, удовлетворяющий рабочим характеристикам оборудования, то их можно использовать в качестве источника для системы полива. В этом случае производительность канала будет определяться производительностью насосной станции или поселковой магистрали. Для расчета можно идти от обратного, а именно, на основании данных о производительности Q источника и создаваемом при этом напоре H определяется давление на самом дальнем дождевателе по каждому каналу.
В оросительных системах, использующих насосное оборудование, желательна установка накопительных емкостей. Применение емкостей позволяет обеспечить объем воды, необходимый на цикл полива, прогретой до температуры окружающей среды. Обычно емкости устанавливаются на участках в хозяйственных зонах и декорируются живыми изгородями.
Источник статьи: http://zgorod-nn.ru/articles/183/