- Как рассчитать необходимую мощность отопления теплицы?
- Потери тепла теплицы
- Отопление теплиц
- Расчет системы отопления культивационных сооружений
- 1. Определение необходимой мощности системы отопления
- 2. Выбор типа системы отопления
- 3. Расчет элементов системы отопления
- Трубная система отопления
- Правильное водяное отопление теплицы своими руками – расчет и схема
- Виды отопления теплиц
- Тепловой насос
- Изготовление
- Отопление водяное и его схема работы
- Калькулятор расчета мощности обогрева теплицы
- Цены на обогреватели для теплицы
- Калькулятор расчета мощности обогрева теплицы
- Пояснения по проведению расчетов
- Водяное отопление теплицы своими руками
- Еще по этой теме на нашем сайте:
- Как сделать зимнюю теплицу
- Виды отопления
- Требования к отопительной системе теплицы
Как рассчитать необходимую мощность отопления теплицы?
Для того, что бы определить количество энергии, необходимой для отопления жилого дома, необходимо взять 1 кВт энергии на 10 м2. Когда речь идет о теплицах, тут необходимо в расчет брать проводные характеристики самой конструкции теплицы. Стены намного лучше сохраняют тепло. В отличие от жилых помещений, теплицы требуют в разы больше энергии.
При нормальных условиях, отопление должно в полной мере восполнять потери тепла. Регулируется система с помощью автоматических или ручных контроллеров.
Потери тепла теплицы
Основные потери теплицы:
- 20-25% тепла уходит через щели, вентиляцию, зазоры, в местах соединения теплицы и фундамента
- 3-5% тепла уходит через грунт, чем дальше от центра теплицы — тем больше потери
- львиная доля тепловых потерь идет через ограждающие конструкции (цоколь, обшивку и т.д.)
Необходимо обратить внимание на теплопроводность обшивочного материала.
Для более удобного расчета количества необходимой энергии, нужно произвести расчеты по формуле:
Q сист.отоп. = kт х Sогр х (Твн – Тнар) х kинф
Коэффициент инфильтрации | |||||
---|---|---|---|---|---|
Автор: Конспект лекций В.В.Климова 80-е гг | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Расчет системы отопления культивационных сооружений1. Определение необходимой мощности системы отопления
Q сист.отоп. = Q огр. + Q инф. +/- Q почв. Q инф. – потери тепла за счет вентиляции через различные щели и т.д. На обогрев почвы затрачивается около 5% всего тепла, поэтому в дальнейших расчетах для простоты Q почв. опускается. Q сист.отоп. = Q огр. + Q инф. Q огр. = kт х S огр(Твн – Тнар) kт – коэффициент теплопередачи (Вт/м2 град) kинф =1,25 (коэффициент инфильтрации) (Твн – Тнар) – так называемая дельта Т, разность температур внутри и снаружи теплицы (оС) Q сист.отоп. = kинф х kт х S огр(Твн – Тнар) Значения коэффициента теплопередачи Вид ограждения Стекло с металлическими шпросами Два слоя стекла с металлическими шпросами Одинарное пленочное покрытие (сухая пленка) Одинарное пленочное покрытие (конденсат на пленке) Двухслойное пленочное покрытие (сухая пленка) Двухслойное пленочное покрытие(конденсат на пленке) 1) Расчет теплопотерь остекленной теплицы площадью (S) 1000 м2 (проект 810-24), Т вн. = 18оС, Т нар.=3оС S огр. = kогр х Sинвентарная kогр = 1,5 (для блочных теплиц) kт = 6,4 (табличные данные) (МГ : для нетиповых теплиц следует сразу рассчитывать площадь поверхности теплицы, как сумму всех поверхностей, и не заморачиваться с коэффициентом ограждения.) Q огр. = 6,4 х 1,5 х 1000 х (18-3) = 144 000 Вт = 144 кВт Q огр. + Q инф.= 144 х 1,25 = 180 кВт Q огр. + Q инф.=168 кВт (МГ: то есть, чем ниже коэффициент ограждения( больше блочная теплица), тем меньше теплопотери) 2) Расчет необходимого Q сист.отоп. стеклянного ограждения блочной теплицы для условий Москвы, Т расч = -31оС Q сист.отоп. = kинф х kт х S огр х (Твн – Тнар) Q сист.отоп. = 1,25 х 6,4 х 1,5 х 1000 х (15- (-31)) = 552 кВт Q сист.отоп. = 515,2 кВт 3) Насколько загружена система отопления (то есть должна снижаться температура воды)? 180 : 552 х 100 = 32,6% 2. Выбор типа системы отопленияДля отопления теплиц применяются:
Трубы отдают часть тепла в виде излучения, а часть конвективно. Калориферы все тепло отдают конвективно, то есть тепло от труб ближе к естественному солнечному обогреву. В типовых (МГ: Антрацитовских) теплицах 8-9 кг/м2 масса самих конструкций и 14-18 кг/м2 масса труб. В типовом проекте 810-82 заложена комбинированная система. При использовании калориферов расход металла снижается в 4-5 раз. Совмещенный обогрев совмещается с элементами конструкции теплицы. Совмещено – комбинированный обогрев применялся в теплицах Овощной опытной станции им. В.И.Эдельштейна, но в современных комбинатах, построенных по типовым проектам, уже не применяется. Коэффициент теплопередачи – количество тепла, передаваемое через единицу поверхности в единицу времени при разности температур в 1 градус. Продолжение примера расчетов Расчет трубной системы отопления заключается в определении диаметра труб и их длины. 4) пример расчета трубной системы при температуре входящей воды 90оС, выходящей из теплицы 75оС k т.тр. – коэффициент теплопередачи труб. Для гладких труб k т.тр. = 12 Вт/м2 х град S отоп. – площадь поверхности труб tвн – ср. температура воды в системе (здесь = (90+75) :2) 552 000 = 12 х S отоп. х (82,5 – 15) S отоп = 552000 : (12 х 67,5) = 681,48 м2 180 000 = 12 х 681 х (Х – 18) (Х – 18) = 180 000 : (12 х 681) Перепад температур должен быть в пределах 20…25оС, то есть около 50/30, чтобы при t н = 3оС в теплице было +18оС. 5) Расчет системы отопления для типового проекта 810-99 (kогр = 1,22) для условий Москвы (tмин = -31оС) Q сист.отоп. = 1,25 х 6,4 х 10 000 х 1,22 х (15 –(-31)) = 4489,6 кВт/га Для всего шестигектарника (МГ: в данном случае не учитываются теплопотери соединительного коридора) Q огр.= 1,22 х 60 000 х 6,4 х 46 = 21,55 мВт Q инф. = 0,25 х 1,22 х 60 000 х 6,4 х 46 = 5,38 мВт Q сист.отоп. = 21,55 + 5,38 = 26,93 мВт Теплопотери через цоколь k т для бетона 2 Вт/м2 х град высота цоколя 0,30 м размеры гектарной теплицы 75 х 141 м, сторона, прилегающая к коридору, не учитывается S цок = 0,3(75 + 141 + 141) = 107,1 м2 Q цок. = k т. х S цок х (tвн – t н) = 2 х 107,1 х 46 х 6 = 59119 Вт = 0,06 мВт 3. Расчет элементов системы отопленияРасчет теплопотерь через почву (по методике для теплиц без почвенного обогрева). Теплопотери через почву меньше всего в центре проекции теплицы и возрастают по направлению к периметру. Вся площадь теплицы условно делится на 4 зоны (см. рисунок) с шагом 2 м. При этом значения коэффициентов теплопередачи для каждой зоны следующие: Площадь каждой зоны в данном случае следующая: S 1 = 141 х 2 х 2 + (71-4) х 2 х 2 = 832 м2 S 2 = (141-4) х 2 х 2 +(71 –8) х 2 х 2 = 800 м2 S 3 = (141-8) х 2х 2 + (71-12) х 2 х 2 = 768 м2 S 4 = 10000 – 832 – 800-768 = 7600 м2 Q почв. 1 = 0,465 х 832 х 46 = 17,8 кВт Q почв. 2 = 0,232 х 800 х 46 = 8,5 кВт Q почв. 3 = 0,116 х 768 х 46 = 4,1 кВт Q почв. 4 = 0,07 х 7600 х 46 = 2,4 кВт Q почв. = 17,8 + 8,5 + 4,1 + 2,4 = 32,8 кВт = 0,032 мВт/га Q почв. сум = 0,032 х 6 = 0,2 мВт Виды теплопотерь, мВт значение % от общего Трубная система отопленияКакова должна быть поверхность системы обогрева? Q общ. = k т х S (tср – tн) S = Q общ./ k т х (tср – tн) k т = 12 Вт/м2 х град Q общ.= Q потерь = 27,19 мВт = 27 190 000 Вт Вода от котельной 95/70 оС S = 27 190 000 /12 х ((95+70):2 –15) = 27 190 000 /810 = 33 568 м2 Сколько км труб необходимо для 6-гектарного блока? 2 дм труба имеет поверхность 1 м = 0,18 м2 33 568 : 0,18 = 186 488 м = 186,5 км 1 пог м = 4,5 кг металла Расположение труб отопления 50% труб располагаются в зоне растений 3 системы: надпочвенный, боковой, кровельный (МГ: как уже говорилось, сегодня различают еще и подпочвеный, и вегетационный (ростовая труба)) Боковой и кровельный обогрев жестко присоединены к магистрали, надпочвенный (М.Г.: и ростовые трубы) подсоединен с помощью гибких шлангов. Диаметр магистральной трубы 219 мм внешний и 200 мм внутренний. Конвекторы и оребренные трубы (МГ: оребренные трубы очень трудно мыть и дезинфицировать) Чем выше параметры теплоносителя, тем больше отдача тепла и меньше расходы металла. Применяются пластиковые и стеклянные трубы. (МГ: я видела стеклянные трубы в производстве, главный недостаток – тракторист, не вписавшийся в поворот, вдребезги разносит всю систему. Починить трудно.) Подпочвенный обогрев От стоек теплицы отступают 400 мм, потом шаг раскладки труб подпочвенного обогрева 800 мм. На стандартную секцию шириной 6,4 м (Антрацит) укладывают 8 труб. Для обогрева почвы нельзя использовать металлопластиковые трубы. В ангарных теплицах применяют контурный обогрев. Подпочвенный обогрев не нужен только в теплицах с водонаполненной кровлей (МГ: в производство такая конструкция не пошла, но одно время испытывалась на Овощной станции ТСХА), так как вода излучает тепло и не дает выхолаживаться почве. Распределение труб в теплице. В целом 45 км /га, 6 труб боковое отопление (2592 м, отдельный стояк), регистры (калачи) длиной 36/ 72 м. Надпочвенный обогрев 12 672 м Подкровельный обогрев 45 – 12,6 – 2,5 = 29,9 км При пролете длиной 75 м получается 1359 м на пролет (22 пролета в стандартной Антрацитовской теплице) или 18 труб. Это создает значительное затенение, поэтому по 2 трубы с кровли (4 с пролета), то есть 6,6 км, добавили вниз к стойкам для надпочвенного обогрева. Вверху осталось 14 труб. Распределение труб по системам отопления Источник статьи: http://www.gidroponika.su/gidroponika-teorija.html/48-teplicy/110-otoplenie-teplic.html Правильное водяное отопление теплицы своими руками – расчет и схемаЗимние теплицы в последнее время завоевывают не меньшую популярность, чем их летние аналоги. И неудивительно: ведь овощи, зелень и ягоды в «несезон» стоят дороже, и обладают большей ценностью сами по себе, так как являются редкостью. Устройство зимней теплицы отличается от летнего аналога более толстыми стенами, прочностью, надежностью, герметичностью и, конечно же, наличием отопления. Чаще всего такие сооружения сейчас делают из современного материала — сотового поликарбоната, обладающего гибкостью, долговечностью,экологичностью, и прочими важными характеристиками. В статье рассмотрим особенности зимней теплицы из поликарбоната с отоплением: узнаем, какие виды отопления теплиц бывают, и как правильно рассчитать его необходимую мощность. Кроме того, выясним, как сделать такую теплицу собственными силами. Виды отопления теплицСуществует множество простых видов отопления теплиц. Их можно обогревать газовым, печным, электрическим, паровым или водяным способом. Не рекомендуем использовать при обогреве теплиц электрический калорифер, так как не будет нормальной циркуляции воздуха, а значит, будет неравномерно прогреваться помещение. И какой-то участок прогреется сильнее, чем нужно, а другой более отдаленный, вообще останется без тепла.
Когда выбирается вид обогрева, необходимо опираться на размеры помещений, количество выделенных средств и прочее. Необходимо скрупулезно изучить каждый вид обогрева парников для того, чтобы правильно выбрать систему. Важным аспектом является особенности работы каждой отопительной системы. Ведь некоторые более простые и удобные, но дорогие. Производить монтаж некоторых систем отопления может только профессионал. Для отопления промышленных теплиц необходимо применять новейшие технологии. Тепловой насосСооружение теплового насоса – достаточно трудоемкий процесс, но он очень эффективный и самый экономный, а если его делать из ненужных запчастей, то такой обогрев теплицы – один из самых дешевых среди технических способов отопления. Он поглощает энергию из окружающей среды и направляет ее в систему теплоснабжения, требует минимум затрат на топливо и минимум внимания к обслуживанию. ИзготовлениеЕсть три вида таких обогревателей для домашних и фермерских теплиц: грунт-вода, воздух-вода, вода-вода. Рассмотрим этапы, как можно соорудить такой насос своими руками. Так, компрессор можно взять от кондиционера. В теплице его нужно разместить на высокой подставке. Для конденсатора подойдет бак из нержавейки на 50–100 л. Он разрезается на две части. Туда вставляется медная трубка-змеевик, по ней движется фреон или другая незамерзающая жидкость (вода со спиртом). Можно взять трубу от холодильника или обычную сантехническую. Она сворачивается в змеевик – наматывается на баллон. Витки могут фиксироваться для равношаговости алюминиевыми рейками. Концы выводятся с помощью сантехнических переходов. Бак сваривается, делается несколько отверстий. Вход в конденсатор делается сверху, выход – снизу, чтобы не образовывались пузырьки. Для испарителя подойдет пластиковая бочка объемом около 80 л. Для стока и подачи используют обычные канализационные трубы с уплотнителями. Отопление водяное и его схема работыСамой главной составляющей в схеме водяного отопления теплиц является котел. У него есть возможность работать в парниках на разнообразном топливе, поэтому котлы разделяют на такие виды:
Выбирают топливо из расчета рентабельности использования с учетом региона. Этот обогрев теплиц состоит из труб и самих батарей. Немаловажно, что водяное отопление подогревает не только помещение парника, но и грунт тоже.
Благодаря чему можно производить изменения температурного режима земли и воздуха по установленным значениям. Обязательным является наличие качественного антикоррозийного покрытия водяного отопления. Если есть желание, можно всегда сделать водяное отопление теплицы своими руками. Но перед этим необходимо детально рассмотреть технологию процесса обогрева. Важно верно сделать расчет, благодаря которому будет рационально использоваться энергетические ресурсы и оптимально распределяться тепловая энергия. Калькулятор расчета мощности обогрева теплицыНаличие загородного участка очень часто предполагает ведение на нем тех или иных сельскохозяйственных работ. Согласитесь, любому человеку приятно иметь на своем столе овощи, фрукты или ягоды, выращенные собственноручно и гарантированно «чистые». Но вот правда летний «огородный» сезон во многих регионах – довольно короток. Поэтому рачительные хозяева строят специальные агротехнические сооружения – теплицы и парники. А чтобы довести период сельхозработ до возможного максимума, или даже вообще перейти на круглогодичный цикл, обязательно потребуется оборудовать теплицу системой обогрева.
Система отопления теплицы может быть разной – печи длительного горения, водяные или электрические контуры, заглубленные в грунт по принципу «теплого пола», конвекторы, обеспечивающие перемещения масс теплого воздуха, инфракрасный обогрев. Но любая из выбранных систем должна выполнять главную задачу – создавать и поддерживать в помещении требуемую для выращиваемых культур температуру, то есть, обладать определенной тепловой мощностью. А вот какой? – в этом вопросе нам поможет калькулятор расчета мощности обогрева теплицы. Цены на обогреватели для теплицыНиже, под калькулятором, приведены пояснения и необходимые справочные данные. Калькулятор расчета мощности обогрева теплицыПерейти к расчётам Пояснения по проведению расчетовМощности системы обогрева теплицы должно быть достаточно для обеспечения компенсации теплопотерь, а они, при больших площадях остекления этих сооружений – весьма немалые. Расчет необходимой тепловой мощности строится исходя из следующего соотношения: Qт = Sw × Kinf × Δt × τw Qт – рассчитываемая мощность обогрева. Sw – площадь остекления теплицы. Именно она принимается в расчет, так как через прозрачные стены проходит не только инсоляция (проникновение энергии солнечных лучей), но и максимальный объем теплопотерь. Площадь рассчитывается самостоятельно, по известным геометрическим формулам.
Некоторые геометрические фигуры не желают напрямую «подчиняться» простым формулам, и их приходится разбивать на участки. Как рассчитать площадь – в том числе и для сложных случаев, с примерами и калькуляторами – в специальной публикации нашего портала. Kinf – так называемый коэффициент инфильтрации. Он зависит от примерного режима эксплуатации теплицы, то есть от необходимой температуры внутри сооружения, и возможного уровня температур снаружи, на улице. Естественно, желательно брать в расчет наиболее неблагоприятные возможные условия, чтобы обеспечить необходимый эксплуатационный запас мощности. Значения коэффициента инфильтрации можно взять из таблицы ниже:
Δt – максимальная амплитуда температуры, то есть разница между нормальным значением в помещении, и минимальным – на улице, в самую холодную неделю в период эксплуатации теплицы. В калькуляторе значении Δt будет подсчитана по указанным значения снаружи и внутри. — Как правило, + 18 ºС бывает достаточно для выращивания большинства овощей. Для рассады или цветов требуется порядка + 25 ºС. При выращивании некоторых экзотических растений температурный режим предполагает и более высокие показатели. — В поле ввода внешних температур указывается уровень минимальной отрицательной температуры воздуха, характерный для данного региона, в период эксплуатации теплицы. τw – показатель теплопроводности материала остекления теплицы. Разные материалы (по составу и по строению) имеют собственную теплопроводность – она уже учтена в алгоритме калькулятора. Вариант теплицы с пленочным покрытием не рассматривается, так как воспринимать его всерьез в качестве «зимнего» сооружения – было бы преувеличением. Полученное значение, в киловаттах, станет ориентиром при выборе наиболее подходящей системы обогрева теплицы.
Вопрос неоднозначный, так как теплицы могут существенно различаться размерами, принципиальной конструкцией, своей оснащенностью и другими характеристиками. Тем не менее, это вполне выполнимо, и ряд полезных рекомендаций по данной проблеме можно получить в специальной статье портала – про строительство теплицы своими руками.
Водяное отопление теплицы своими рукамиСамым выгодным обогревом парников является водяное отопление. Сделать самостоятельно данный обогрев парника, а точнее сам электрический водяной нагреватель, можно поэтапно:
Еще по этой теме на нашем сайте:
Как сделать зимнюю теплицуЧто такое тепловой баланс Когда определяют потребности частного дома в тепловой энергии, пользуются простым правилом: на каждые 10 квадратных метров площади должно приходиться около 1 кВт мощности теплогенератора. При рассмотрении сооружений защищённого грунта такой подход не годится, потому что слишком сильно отличаются теплотехнические характеристики ограждающих конструкций — потребности в энергии будут в разы больше.
автоматики поддерживать этот баланс. Итак, найдём точные данные о теплопотерях — узнаем, какой мощности нужно отопление. Как теплица теряет тепло До 20-30 процентов полезной энергии может уходить с тёплым воздухом через щели, зазоры (форточки, дверь…), вентиляцию. Происходит инфильтрация — снизу (например, под дверью, или в зоне примыкания обшивки к фундаменту) подсасываются холодные воздушные массы, а вверху тёплый воздух уходит наружу. Практика показывает, что, если нет искусственного подогрева грунта, то около 2-5 процентов тепла уходит через него. Интересно, что это происходит неравномерно, чем ближе к центру сооружения, тем потери меньше. Больше всего теплопередача наблюдается по периметру.
Q сист.отоп. = kт х Sогр х (Твн – Тнар) х kинф kт — это коэффициент теплопередачи обшивки (выбираем из списка выше). Sогр — общая площадь стен площадь кровли. Твн – Тнар — это дельта температур, суммарный перепад между наружной и проектной внутренней. Данные о сезонных температурах можно взять из нормативных документов по отоплению зданий, например, СНиП 23-01-99 «Строительная климатология». kинф — коэффициент инфильтрации, отображающий потери тепла через неплотные примыкания и зазоры (в среднем равняется 1,25). Для качественных фабричных теплиц он может не применяться. ЧИТАТЬ ДАЛЕЕ: Калькулятор расчета сухой строительной смеси для самовыравнивающегося пола — планируем ремонт
Q сист.отоп. = 3,3 х 150 х 46 Х 1,25 = 28,5 кВт Для аналогичной теплицы из одинарного стекла потребуется котёл или, например, дровяная печь-булерьян мощностью 51,75 кВт (Q сист.отоп. = 6 х 150 х 46 Х 1,2). Соответственно, плёночное сооружение будет ещё «прожорливее» — необходимо создать систему производительностью порядка 83 киловатт. Если теплогенератор у вас в наличие имеется — используя формулу, можно высчитать, какого максимального размера (или из какого материала) теплицу можно строить под него. В свою очередь, если есть котёл, и есть теплица — можем высчитать, при какой минусовой температуре можно будет эксплуатировать сооружение.
Очевидно, что не все нюансы учтены. Некоторые моменты упрощаются или принимаются по умолчанию.
Выбирая котёл или другое отопительное устройство, рекомендуется предусмотреть запас мощности около 20% сверх расчётной, больше — тоже нерационально. Желательно, отказаться от универсальных многотопливных агрегатов (обычно они менее эффективны). Используйте погодозависимую автоматику — она реально позволяет экономить энергоносители. Для того, что бы определить количество энергии, необходимой для отопления жилого дома, необходимо взять 1 кВт энергии на 10 м2. Когда речь идет о теплицах, тут необходимо в расчет брать проводные характеристики самой конструкции теплицы. Стены намного лучше сохраняют тепло. В отличие от жилых помещений, теплицы требуют в разы больше энергии. При нормальных условиях, отопление должно в полной мере восполнять потери тепла. Регулируется система с помощью автоматических или ручных контроллеров. Основные потери теплицы:
Для более удобного расчета количества необходимой энергии, нужно произвести расчеты по формуле:Q сист.отоп. = kт х Sогр х (Твн – Тнар) х kинф ЧИТАТЬ ДАЛЕЕ: Можно ли подключить розетку к выключателю света?
Характеристики основных материалов ( Вт/м2 х °С):
Q сист.отоп. = 3,3 х 150 х 46 Х 1,25 = 28,5 кВтДля аналогичной теплицы из одинарного стекла потребуется котёл или, например, дровяная печь-булерьян мощностью 51,75 кВт (Q сист.отоп. = 6 х 150 х 46 Х 1,2). Соответственно, плёночное сооружение будет ещё «прожорливее» — необходимо создать систему производительностью порядка 83 киловатт.
Рекомендуется использовать котлы на 20% больше, с запасом.
Чаще всего такие сооружения сейчас делают из современного материала — сотового поликарбоната, обладающего гибкостью, долговечностью,экологичностью, и прочими важными характеристиками. В статье рассмотрим особенности зимней теплицы из поликарбоната с отоплением: узнаем, какие виды отопления теплиц бывают, и как правильно рассчитать его необходимую мощность. Кроме того, выясним, как сделать такую теплицу собственными силами. Этот материал в настоящее время широко применяется в строительстве различных конструкций. Идеально подходит он и для сооружения теплиц: как летних, так и зимних их вариантов.
Арки любой степени изогнутости, разнообразные геометрические формы: все это вполне доступно сделать при помощи поликарбоната. ЧИТАТЬ ДАЛЕЕ: Калькулятор расчета необходимой мощности электрообогревателя Материал замечательно пропускает свет. Согласно исследованиям разработчиков, поликарбонат пропускает примерно 85% солнечного света. К тому же этот уникальный материал — замечательный теплоизолятор, и растениям в такой теплице вполне комфортно. Благодаря теплоизолирующим свойствам, владельцы теплицы затрачивают меньше дорогостоящих ресурсов на отопление: получается довольно существенная экономия. Виды отопленияУзнаем, какие разновидности отопления используются сейчас в тепличном бизнесе. Выясним основные моменты изготовления собственными руками зимней теплицы из поликарбоната, оснащенную отоплением. Необходимо знать, что постройка в данном случае будет стационарной: не разборной, и не мобильной. Поэтому сразу же найдите для теплицы оптимальное и удобное место. Строению понадобится прочный фундамент и основательный каркас: благодаря им сооружение получится прочным, надежным и устойчивым. Лучше всего сделать фундамент из камня или кирпича. Дерево в данном случае не годится, так как периодически его придется менять из-за гниения. Форма фундамента — ленточная: это и просто, и не слишком дорого. Требования к отопительной системе теплицыЧтобы обогревательные устройства в теплице работали правильно и безопасно, необходимо провести следующие мероприятия:
Источник статьи: http://all-hybrids.ru/ustrojstvo/raschet-otopleniya-teplicy.html |