- Делаем умную теплицу на Ардуино своими руками
- Общие сведения об управляющих системах
- Чего бы хотелось
- Мониторинг и настройка
- Управление
- Реализация в «железе»
- Мониторинг и настройка
- Полив
- Отопление
- Вентиляция
- Освещение
- Управляющая электрическая схема
- Программная часть
- Мониторинг
- Управление
- Заключение
- Видео по теме
- Организация полива, обдува и освещения в Умной теплице на Ардуино
- Организация полива, обдува и освещения в Умной теплице на Ардуино
Делаем умную теплицу на Ардуино своими руками
Автоматизация вездесуща. Различные механизмы создают комфортные температурные условия, помогают при готовке пищи, ухаживают за одеждой, включают и гасят свет, а также поддерживают чистоту помещения. Но использование их не ограничивается бытом человека. Вообще во всем окружении, на улице или производстве, при перевозках чего-либо, в магазинах или сельском хозяйстве — везде работают незримые помощники.
С развитием технологической базы вырастает и уровень автоматизации. Сейчас роботы или механизмы выполняют не просто последовательность заложенных действий. Их устройство теперь позволяет осуществлять своеобразный «выбор», в зависимости от изменившихся внешних условий. Самый простой пример — стиральная машина. Ее внутренняя начинка определяет температуру воды и при необходимости подогревает ее, следит за временем стирки и правильностью текущих циклов выполнения.
Кроме уже описанного, в нашу жизнь вошли «умные» дома, города, кварталы или улицы. Главное отличие их от обычных — присутствие взаимосвязанных между собой систем управления. Каждая из которых контролирует одно устройство из присутствующих в комплексе. Но, работу всех их определяет общая система, отправляя сведения необходимые для функционирования или указывающие команды.
Одной из относительно редко использующихся схем интеллектуального управления можно назвать применение его в сельском хозяйстве, а конкретно для полной автоматизации парников или аппаратуры ухода за растениями. Собственно, подготовить и собрать умную теплицу на Ардуино своими руками вполне по силам и относительно разбирающемуся в электронике человеку. О чем и будет рассказано далее.
Общие сведения об управляющих системах
Интеллектуальность современного оборудования обеспечивается микроконтроллерами. Это небольшие и ограниченные по ресурсам полноформатные компьютеры, зачастую размещенные на одной плате или микросхеме. Несмотря на свои маленькие размеры их мощности вполне достаточно для того, чтобы управлять различным оборудованием. Информацию, необходимую для выполнения своих функций, такие микрокомпьютеры получают посредством различных специализированных датчиков. Общее нахождение устройств в единой сети обеспечивается посредством дополнительных присоединяемых к микроконтроллеру модулей.
Выполняя свою программу, интеллектуальные устройства, выдают управляющие импульсы на исполняющие цепи включающие двигатели, насосы, нагреватели или любые другие устройства для управления которыми и создается вся система.
Основой многих из подобных комплексов составляют контроллеры серии Arduino, STM, Ti MSP430, Netduino, Teensy, Particle Photon, ESP8266 или иных распространенных плат такого типа в мире. Кроме того, некоторые специалисты создают свои варианты микро — компьютеров, управляющих оборудованием — на основе устаревших ПК или каких-либо 8 разрядных процессоров, к примеру, Z80.
Чего бы хотелось
Наибольшее желание любого огородника — получать максимальный урожай при минимальных затратах труда. Одним из вариантов решения этой проблемы становятся теплицы. Но и в таком случае хочется, чтобы в ней самостоятельно грядки поливались, освещались, и обогревались, когда нужно. Ну и конечно, была организована автоматическая система вентиляции, для минимизации усилий по открыванию и закрыванию форточек.
Мониторинг и настройка
Конечно, в первую очередь, требуется система управления всем этим высокоинтеллектуальным хозяйством. Кроме того, желательно получение информации о текущем состоянии напрямую или на домашний компьютер, или на смартфон. С этой целью будет использоваться контроллер для теплицы на Arduino.
Управление
В соответствии с желаниями, необходимо организовать автоматическое управление отоплением пола (как основы подогрева посадок), открытия форточек, увлажнением почвы. Хороша будет система контроля освещения, которая зажигает его, если на улице темно.
Реализация в «железе»
Ничего сложного в реализации проекта нет. Достаточно применить плату Arduino, в комплексе с несколькими датчиками (влажности, температуры, освещенности, наполнения бака полива и концевых контактов окон проветривания), а также парой двигателей для вентиляции и смонтировать систему «теплый пол».
Но сначала требуется сделать саму теплицу. Для основы была создана такая модель:
Вот ее перенос в реальность:
Мониторинг и настройка
Визуализация информации, а также пункты меню настройки выводятся на LCD1602 дисплей, с конвертором в IIC/I2C UC-146 для подключения его к Arduino.
Для выбора параметров используются 4 клавиши. Все это вместе желательно разместить в общем контрольном ящике.
Кроме визуального, для удаленного контроля будет использоваться модуль WIFI связи ESP8266 LoLin NodeMCU2, с помощью которого информация с использованием UDP протокола будет передаваться на домашний компьютер с настроенным web-сервером и базой данных. Которые впоследствии, можно будет получить на любом устройстве в общей сети — смартфоне, цифровом телевизоре или планшете.
Подключаться модуль к ардуино уно будет через серийный порт (RX/TX). Причем электрический контакт производится напрямую TX(модема)-TX(Arduino) и RX аналогично. Почему это важно — зачастую рекомендуют делать соединение перекрестным RX-TX. В прилагаемой схеме это не нужно.
Полив
Система полива работает на основе физических принципов и насоса, который функционирует определенное время. Периодом и началом которого управляет Ардуино. С утра бак наполняется водой, что ограничивается временем в управляющем скетче и датчиком на прилагаемом чертеже. В течение дня она прогревается воздухом в теплице. Вечером происходит кратковременное включение насоса, который слегка переполнив емкость запускает полив самотеком.
Так он выглядит в реальности (вместе с системой подачи воды на грядки):
Его схема работы:
Ночью бачок стоит пустым, чтобы в случае отключения обогрева и падения температуры воздуха ниже нуля его не сломало замерзшей водой.
Отопление
Подогрев земли сделан предварительной укладкой «теплого» пола под будущие грядки. Включение происходит через специальное реле на 30 А, так как мощности выдаваемой ардуино никогда в жизни бы не хватило для питания такого потребителя.
Кроме него используется обычный бытовой нагнетатель теплого воздуха, который позволяет нагреть внутреннее пространство теплицы. Он также подсоединяется к микроконтроллеру.
Вентиляция
Для обеспечения движения воздуха предусмотрены два поворотных окна, процесс открытия и закрытия которых выполняется двигателями от автомобильных дворников. В свою очередь, подключённых к Arduino.
Освещение
Чтобы обеспечить растения постоянным притоком света, используются китайские светодиодные ленты, которые включаются в зависимости от таймера и уровня освещенности.
На приведенной ниже схеме оно подключается к выводам резерв (освещение).
Управляющая электрическая схема
Ну и конечно самая главная часть — принципиальная схема «мозгов» всей этой конструкции.
Маленькое примечание: мощности для обогревателей (воздуха и почвы) у реле Arduino не хватает. Дополнительно к ним используются в качестве посредников токовые, высокоамперные варианты, подключаемые уже непосредственно к потребителям.
Программная часть
С оборудованием все понятно. Осталось разобраться с программами, которые им управляют и контролируют состояние всей системы. Так как в комплексе есть два высокоинтеллектуальных устройства — ESS8266 и сам Arduino. Соответственно для обоих нужны свои программы. Помещение их в память устройств, в обоих случаях производится через Arduino IDE.
Мониторинг
Скетч, который необходимо выгрузить в ESP8266 LoLin NodeMCU, для обеспечения его связи с Arduino и WIFI роутером.
Управление
Ну и в финале, большой скетч управления самой теплицей, который выгружается в Arduino.
Замечания по конструкции
Датчик DN11 желательно заменить на DN22, который хоть и стоит дороже, но более точен и функционирует без проблем свойственных своему младшему тезке. Для питания контуров управления можно использовать компьютерный блок питания, желательно форм-фактора AT.
Заключение
Как видно из всего выше сказанного создать у себя на участке умную теплицу не так уж и сложно. Какие-то элементы можно убрать, что-то можно добавить, но после проделанной работы важно одно — вы получите у себя на участке функциональную теплицу, которая будет вас радовать урожаем и сама за собой следить, вам останется только провести посадку и ждать урожая.
Видео по теме
Источник статьи: http://vashumnyidom.ru/komfort/uxod/umnaya-teplica-na-arduino-svoimi-rukami.html
Организация полива, обдува и освещения в Умной теплице на Ардуино
Организация полива, обдува и освещения в Умной теплице на Ардуино
В предыдущих статьях по Умной теплтице (проект «Домашний цветок») «Умная теплица на Arduino- делаем первые шаги» и «Индикация показаний при проектировании Умной теплицы на Ардуино» мы реализовали функции мониторинга и вывода данных на дисплей и светодиоды. Сегодня мы добавим нашей Умной теплице функции управления. Нам необходимо организовать полив цветка, обдув, освещение. Выполнять данные операции будем по нажатии соответствующих кнопок.
Дополнительно к деталям, использовавшимся в предыдущих статьях ( нам понадобятся следующие:
- Relay shield на 4 реле – 1 шт;
- Вентилятор 12В – 1 шт;
- Мембранный насос 12В – 1 шт;
- Лампа освещения – 1 шт;
- Кнопка – 3 шт;
- Резистор 10 кОм – 3 шт.
Кнопки и резисторы имеются в каждом из наборов «Дерзай» ( «Базовый» и «Изучаем Arduino» ).
Мембранный вакуумный насос (рисунок 1) будем использовать для полива почвы. Он предназначен для всасывания воды из емкости. Рабочее напряжение 12В, потребляемый рабочий ток 0.5 – 0.7А, расход 1.5 л/мин.
Рисунок 1. Мембранный вакуумный насос
Необходимо поменять шланг требуемой длины (рисунок 2, 3).
Рисунок 2, 3. Замена шланга мембранного вакуумного насоса
При высоких температурах воздуха будем производить обдув цветка с помощью вентилятора. Вентилятор можно взять любой, я вытащил из старого системного блока, который работает от 12В (рисунок 4).
Рисунок 4. Вентилятор
Искусственный свет для эффективного выращивания растений должен излучать спектр электромагнитного излечения аналогичный тому, который получают растения в естественной среде. Если полной аналогии достичь сложно, то освещение должно удовлетворять хотя бы минимальные потребности. Для обеспечения наиболее комфортных условий для развития подбираются специальные лампы, имеющие различное влияние. Рекомендуется использовать следующие лампы:
- светодиодные фитолампы;
- энергосберегающие лампы дневного спектра;
- люминисцентные.
Насос, вентилятор, лампу подключать напрямую к Arduino нельзя! Будем управлять ими через реле. Будем использовать Relay shield (рисунок 5), который содержит 4 реле с необходимой обвязкой.
Рисунок 5. Relay shield
Теперь соберем на макетной плате схему, представленную на рисунке 6 (схема из предыдущей части с добавлением кнопок и реле).
Рисунок 6. Схема соединения для мониторинга параметров и ручного управления проекта «Домашний цветок»
Приступим к дописанию кода скетча. Создаем переменные типа Boolean (true – включено, false – выключено) для состояния трех реле:
В цикле loop() отслеживаем нажатие кнопок с проверяем на дребезг (процедура debounce()) и в случае нажатия кнопки изменяем статус соответствующей переменной и отправляем команду для изменения статуса соответствующего реле на противоположное:
включение/выключение насоса (полив почвы);
включение/выключение освещения;
включить/выключение вентилятора.
Создадим в Arduino IDE новый скетч, занесем в него код из листинга 1 и загрузим скетч на на плату Arduino. Напоминаем, что в настройках Arduino IDE необходимо выбрать тип платы (Arduino UNO) и порт подключения платы.
После загрузки скетча на плату мы можем управлять включением/выключением насоса, лампы, вентилятора с помощью кнопок. В последовательный порт выводим показания датчиков и состояние реле — полив, вентиляция, освещение, (рисунок 7), которое мы устанавливаем с помощью кнопок. На дисплее – показания датчиков.
Рисунок 7. Вывод данных в последовательный порт.
А вот и наш выращиваемый цветок (рисунок 8).
Рисунок 8, 9. Проект «Домашний цветок».
Далее модернизируем систему, в следующем уроке мы будем осуществлять функции мониторинга и управления с телефона или планшете с операционной системой Android.
Источник статьи: http://playarduino.ru/uroki-arduino/organizatsiya-poliva-arduino/