Коэффициент ограждения для теплиц

Коэффициент ограждения для теплиц

2.2. МЕТОДЫ ПРИБЛИЖЕННЫХ РАСЧЕТОВ СИСТЕМ ОТОПЛЕНИЯ И ВЕНТИЛЯЦИИ ТЕПЛИЦ

Наиболее часто уравнения теплового баланса используют для расчета мощности (теплопроизводительности) системы отопления. При этих расчетах не учитывают солнечную радиацию (ночной режим), потери тепла на вентиляцию. В начальный период развития растений теплообменом с растениями ввиду его незначительности пренебрегают. В этом случае система отопления воздуха должна компенсировать теплопотери через ограждение и на инфильтрацию. При отсутствии системы обогрева почвы учитывают и теплопотери через грунт:

В расчетных формулах внутреннюю температуру воздуха для зимних теплиц принимают равной 15 °С, температуру наружного воздуха — равной средней многолетней для самых холодных суток для данного географического района и периода эксплуатации.

Для упрощения расчетов теплопотери через почву, так же как и потери на инфильтрацию, выражают в долях теплопотерь через ограждение (в среднем 0,03).

Тогда общая теплопроизводительность системы, кВт, отопления

Если в теплице проектируется и система обогрева почвы, теплопроизводительность системы обогрева почвы рассчитывается без учета теплопотерь через почву:

где Когр — коэффициент ограждения теплицы [см. формулу (3)]; Кт — коэффициент теплопередачи, принимаемый в соответствии с указаниями в формуле (3); SТ — площадь теплицы, м 2 ; tвн — температура воздуха в теплице, °С; tн — расчетная температура наружного воздуха, °С.

Для расчета системы отопления почвы используют нормативный коэффициент:

Конструктивный расчет систем отопления теплиц проводят в зависимости от выбранного типа системы. Если теплицу предполагается отапливать при помощи металлических труб с циркулирующим теплоносителем, определяют необходимое количество труб, их массу и расположение в теплице. При расчете воздушно-калориферного отопления определяют количество агрегатов и их расположение в теплице.

Количество агрегатов для обогрева теплицы устанавливают но обеспеченности необходимой суммарной теплопроизводительности:

где Qот.в — необходимая теплопроизводительность системы отопления, кВт; Qагр — теплопроизводительность отдельного агрегата, кВт (табл. 4 и 5); Кз -коэффициент запаса, равный 1,15.


Таблица 4. Технические данные воздушно-отопительных агрегатов


Таблица 5. Основные технические данные теплогенераторов и воздухонагревателей

При расчете водотрубной системы отопления вначале определяют требуемую площадь поверхности, м 2 , отопительных приборов

где Qот.в — необходимая теплопроизводительность системы отопления воздушного шатра, кВт; Кт — коэффициент теплопередачи для труб, равный 12 Вт/(м 2 •°С) для гладких труб, 10 Вт/(м 2 •°С) для полиэтиленовых труб подпочвенного обогрева и 6 Вт/(м 2 -°С) для стальных сребренных труб; tот.ср средняя температура труб в системе отопления, которая зависит от температуры теплоносителя:

для перепада температур в системе отопления 45-35 С (подпочвенный обогрев)

для перепада 95-70 °С

для перепада 130-70 °С

для перепада 150-70 °С

tВН — расчетная температура, воздуха в теплице, °С.

Ддя системы отопления используют трубы диаметром условного прохода (внутренним) 25, 32, 40, 50, 70, 80 и 100 мм. Общую длину, м, труб определяют по формуле L=Sот/Sтр,(15)

где SOT — площадь поверхности 1 м трубы (табл. 6) . Температурные графики систем отопления определяются в технических условиях на стадии проектирования теплицы энергоснабжающими организациями. В графике указывается температура первичного и вторичного теплоносителя для расчетной температуры наружного воздуха.


Таблица 6. Технические данные стальных и стеклянных отопительных труб

В качестве примера рассчитаем систему отопления для блочной остекленной теплицы площадью 1000 м 2 для условий эксплуатации в Подмосковье.

Теплопроизводительность системы отопления воздуха зимней блочной теплицы

Требуемая поверхность отопительных приборов (труб) при отопительном графике 130-70 °С составит

Общая длина труб внутренним диаметром 51 мм для теплицы

При расчете системы отопления индивидуальной пленочной теплицы вначале необходимо уточнить, в каких условиях будет работать проектируемая системама. Если теплица предназначена для ранней эксплуатации, что предполагает покрытие ее пленкой и включение системы отопления в апреле, то нужно в расчетах принимать температуру наружного воздуха, равную -15 С. При поздних сроках эксплуатации (май, июнь) достаточно обеспечить защиту растений от возвратных заморозков (до -5 °С). И в том, и в другом случае внутреннюю температуру принимают для огурцов +12 °С, для томатов +8 °С, для зеленньЪс культур +5 °С.

Рассчитаем потребную теплопроизводительность системы отопления для ранних и поздних сроков ввода в эксплуатацию пленочной теплицы типа «Урожай». Вначале определим коэффициент ограждения теплицы. Площадь ограждения теплицы (рис. 24) образуют боковые и торцевые стены и кровля, суммарная их поверхность


Рис. 24. К расчету коэффициента ограждения теплицы ‘Урожай’

Требуемая производительность системы отопления для раннего периода эксплуатации без системы отопления почвы

Система отопления для поздних сроков эксплуатации (для защиты растений от возвратных заморозков) будет значительно меньшей мощности (при условии поддержания в теплице температуры +5 °С):

Можно решить и обратную задачу, т. е. определить возможную защищенность растений при установке в теплице нагревательного устройства заданной производительности. Рассчитаем, какую температуру может обеспечить в теплице электротепловентилятор «Ветерок» мощностью 1,25 кВт при температуре наружного воздуха -5 °С. Воспользуемся формулой (10) для определения теплопроизводительности системы отопления:

Читайте также:  Сад огород дизайн сада

Расчет показал, что указанное нагревательное устройство может быть использовано в теплице для защиты от заморозков до -5 С.

Систему отопления почвы обычно не рассчитывают, а выбирают по аналогии с промышленными типовыми теплицами. При использовании водотрубной системы из полиэтиленовых труб их располагают с шагом 0,75—0,80 м в овощных теплицах и 0,4 м в рассадных. Более подробно об устройстве отопления почвы будет рассказано ниже.

В индивидуальных теплицах с обогревом воздуха мощность системы отопления почвы принимается равной 40-50 Вт/м 2 , без обогрева воздуха 80-100 Вт/м 2 .

Систему вентиляции также специально не рассчитывают, а используют нормативные коэффициенты, полученные опытным путем. Для систем с естественной вентиляцией доля раскрывающихся фрамуг должна составлять 5-10% площади ограждения для центральных районов и 10-15% для южных районов. Для проектирования побудительной вентиляции при помощи электровентиляторных агрегатов пользуются нормативной кратностью воздухообмена. Для индивидуальных теплиц расчетная подача вентиляторов должна составлять не менее 1 м 3 /мин на 1 м 2 плдщади теплицы, для промышленных типовых теплиц блочного типа — 1,5 м 3 /мин, для ангарных теплиц — 2 м 3 /мин.

Источник статьи: http://www.berrylib.ru/books/item/f00/s00/z0000039/st010.shtml

Коэффициент ограждения, его значение в тепличном овощеводстве.

Коэффициент ограждения (Ког) – отношение поверхности ограждения сооружения к его площади ((поверхность стен + торцы + кровля)/площадь сооружения). Характеризует расход материалов на единицу площади, расход тепла, расход стекла, пленки.

Варьирует от 2,5 до 1,

у ангарных теплиц 1,3 . 1,5

у блочных теплиц (Антрацит) 1,1 . 1,25

Следует стремиться к уменьшению коэффициента ограждения, перспективны блочные теплицы.

1) Расчет теплопотерь остекленной теплицы площадью (S) 1000 м2 (проект 810-24), Т вн. = 18оС, Т нар.=3оС

S огр. = kогр х Sинвентарная

kогр = 1,5 (для блочных теплиц)

kт = 6,4 (табличные данные)

(МГ : для нетиповых теплиц следует сразу рассчитывать площадь поверхности теплицы, как сумму всех поверхностей, и не заморачиваться с коэффициентом ограждения.)

Q огр. = 6,4 х 1,5 х 1000 х (18-3) = 144 000 Вт = 144 кВт

Q огр. + Q инф.= 144 х 1,25 = 180 кВт

Q огр. + Q инф.=168 кВт

(МГ: то есть, чем ниже коэффициент ограждения( больше блочная теплица), тем меньше теплопотери)

2) Расчет необходимого Q сист.отоп. стеклянного ограждения блочной теплицы для условий Москвы, Т расч = -31оС

Q сист.отоп. = kинф х kт х S огр х (Твн – Тнар)

Q сист.отоп. = 1,25 х 6,4 х 1,5 х 1000 х (15- (-31)) = 552 кВт

Q сист.отоп. = 515,2 кВт

3) Насколько загружена система отопления (то есть должна снижаться температура воды)?

180 : 552 х 100 = 32,6%

Конвейерное производство сельдерея в защищенном грунте.

Повышение покупательного спроса и культуры питания россиян обуславливают необходимость расширения перечня выращиваемых в защищенном грунте культур группой функциональных овощных растений, к которым относится и сельдерей черешковый. Достижения аграрной науки, строительство современных тепличных комплексов, обеспеченность отрасли специалистами высоких квалификаций позволяют организовать в стране круглогодовое конвейерное производство сельдерея черешкового и других ценных овощных культур.

1. Общие сведения о культуре

Сельдерей пахучий ( Apium graveolens L.) – ценное пряновкусовое растение со специфическим ароматом. Растение двухлетнее, в первый год оно формирует розетку листьев и корнеплод. Различают три разновидности культуры: листовой (Apium graveolens L.), черешковый (Apium graveolens L var dulce, Mill. Pers), корневой (Apium graveolens L. var. Rapaceum). Сельдерей черешковый образует длинные прямостоячие, сильно утолщенные листовые черешки с широким основанием и нежной мякотью. Корнеплод у него большей частью не образуется или представлен только в зачаточном состоянии.

Растение формирует 10-12 черешков различной длины, являющихся морфологическим признаком. Они (черешки) могут быть короткими

(до 20 см), средней длины (20-30 см) и длинными (более 30 см).

Именно черешки с хрустящей нежной мякотью являются продуктовым органом культуры. Они бывают полыми и выполненными, тонкими (0,5-1 см) или толстыми (более 1 см). Окраска черешков зеленая, светло-зеленая, реже с антоциановой окраской. Благодаря пряному вкусу листовые черешки используют в сыром, печеном и вареном виде для приготовления салатов, а также получения сока. Кроме того, их используют как спаржу.

В настоящее время разновидности сельдерея возделывают на всех континентах мира. В странах Евросоюза сельдереем черешковым занято 15900 га. Наиболее широкое распространение он получил в Италии (4600 га), во Франции (3100 га) и в Испании (2100 га). Производство сельдерея корневого сосредоточено в Средней Европе. Крупные партии черешкового сельдерея ежегодно поставляются в Россию из стран западной Европы, так как черешковые сорта у нас выращивают редко и в малых количествах, не удовлетворяющих возрастающий потребительский спрос населения на ценный продукт функционального значения.

Наряду с широким использованием в кулинарии, народной медицине, консервной промышленности его разновидности все чаще стали применять в диетическом питании, в выработке лекарственных препаратов, парфюмерии и косметике. Такая перспектива вызывает необходимость разработки различных технологий как в открытом, так и защищенном грунте по обеспечению беспрерывного производства сельдерея.

Читайте также:  Остекление веранд деревянными рамами

2. Биохимический состав, пищевые, диетические достоинства и лечебные свойства сельдерея

Физиологическое значение сельдерея в питании человека обусловлено высоким содержанием витамина С, фолиевой кислоты, каротина и эфирных масел, придающих всем органам растения (корнеплоду, черешкам, листьям, семенам) специфический запах. Эфирными маслами более богаты листья (300 мг %), нежели корнеплоды (5-50 мг %). В состав эфирных масел сельдерея входят 19 компонентов, доминирующими из которых являются лимонен и мирцен. Листья содержат также каратиноиды (каротин и критоксантин), из минеральных солей особенно много калия и натрия. Содержание органического натрия в растении позволяет ему заменять поваренную соль, снабжая организм нужным количеством натрия без неприятных последствий. Это растение является источником диетической клетчатки, рибофлавина и хлорофилла, содержит много важных минеральных веществ, таких как калий, фосфор, кальций, магний, цинк, железо, содержит очень мало жиров. Из черешков сельдерея готовят диетические блюда – тушеный сельдерей с овощами, запеченный сельдерей.

Сельдерей имеет не только пищевое значение, но и обладает рядом лечебных свойств. В народной медицине сельдерей используют как лекарственное растение при болезнях почек, мочевого пузыря, сахарном диабете. Он укрепляет стенки сосудов, его рекомендуют при гипертонической и ишемической болезнях сердца, благоприятно действует на нервную систему. «При расстроенных нервах сельдерей должен быть и твоей пищей, и твоим лекарством», — советовал Гиппократ. Довольно высокое содержание витамина Е оказывает общеукрепляющее действие. Сельдерей особенно полезно включать в питание больным с отложением солей, подагрой, почечнокаменной болезнью. Сок сельдерея обладает противогрибковой и антибактериальной активностью. Свежий сок сельдерея используют как мочегонное средство и как болеутоляющее при лечении трудно заживающих ран. Эфирное масло, входящее в состав сельдерея, улучшает аппетит и пищеварение, повышает жизненный тонус. Сельдерей богат магнием и железом, что ценно для кровотворения. Он улучшает половую, гормональную деятельность. Это одно из распространенных средств против бесплодия. Сельдерей повышает жизненный тонус, нейтрализует канцерогены, содержащиеся в табачном дыме.

Дата добавления: 2019-02-12 ; просмотров: 161 ; Мы поможем в написании вашей работы!

Источник статьи: http://studopedia.net/12_58862_koeffitsient-ograzhdeniya-ego-znachenie-v-teplichnom-ovoshchevodstve.html

Отопление теплиц

Автор: Конспект лекций В.В.Климова 80-е гг

Расчет системы отопления культивационных сооружений

1. Определение необходимой мощности системы отопления

  1. рассматривается период минимального прихода тепла извне, то есть экстремальные условия.
  2. ночной период
  3. самые холодные сутки года
  4. Т возд.мин. 15 о С
  5. Т почв.мин. 18 о С

Q сист.отоп. = Q огр. + Q инф. +/- Q почв.

Q инф. – потери тепла за счет вентиляции через различные щели и т.д.

На обогрев почвы затрачивается около 5% всего тепла, поэтому в дальнейших расчетах для простоты Q почв. опускается.

Q сист.отоп. = Q огр. + Q инф.

Q огр. = kт х S огр(Твн – Тнар)

kт – коэффициент теплопередачи (Вт/м2 град)

kинф =1,25 (коэффициент инфильтрации)

(Твн – Тнар) – так называемая дельта Т, разность температур внутри и снаружи теплицы (оС)

Q сист.отоп. = kинф х kт х S огр(Твн – Тнар)

Значения коэффициента теплопередачи

Вид ограждения

Стекло с металлическими шпросами

Два слоя стекла с металлическими шпросами

Одинарное пленочное покрытие (сухая пленка)

Одинарное пленочное покрытие (конденсат на пленке)

Двухслойное пленочное покрытие (сухая пленка)

Двухслойное пленочное покрытие(конденсат на пленке)

1) Расчет теплопотерь остекленной теплицы площадью (S) 1000 м2 (проект 810-24), Т вн. = 18оС, Т нар.=3оС

S огр. = kогр х Sинвентарная

kогр = 1,5 (для блочных теплиц)

kт = 6,4 (табличные данные)

(МГ : для нетиповых теплиц следует сразу рассчитывать площадь поверхности теплицы, как сумму всех поверхностей, и не заморачиваться с коэффициентом ограждения.)

Q огр. = 6,4 х 1,5 х 1000 х (18-3) = 144 000 Вт = 144 кВт

Q огр. + Q инф.= 144 х 1,25 = 180 кВт

Q огр. + Q инф.=168 кВт

(МГ: то есть, чем ниже коэффициент ограждения( больше блочная теплица), тем меньше теплопотери)

2) Расчет необходимого Q сист.отоп. стеклянного ограждения блочной теплицы для условий Москвы, Т расч = -31оС

Q сист.отоп. = kинф х kт х S огр х (Твн – Тнар)

Q сист.отоп. = 1,25 х 6,4 х 1,5 х 1000 х (15- (-31)) = 552 кВт

Q сист.отоп. = 515,2 кВт

3) Насколько загружена система отопления (то есть должна снижаться температура воды)?

180 : 552 х 100 = 32,6%

2. Выбор типа системы отопления

Для отопления теплиц применяются:

  • Трубная система отопления
  • Воздушно-калориферная
  • Комбинированная 50% : 50 %

Трубы отдают часть тепла в виде излучения, а часть конвективно.

Калориферы все тепло отдают конвективно, то есть тепло от труб ближе к естественному солнечному обогреву. В типовых (МГ: Антрацитовских) теплицах 8-9 кг/м2 масса самих конструкций и 14-18 кг/м2 масса труб.

В типовом проекте 810-82 заложена комбинированная система.

При использовании калориферов расход металла снижается в 4-5 раз.

Совмещенный обогрев совмещается с элементами конструкции теплицы. Совмещено – комбинированный обогрев применялся в теплицах Овощной опытной станции им. В.И.Эдельштейна, но в современных комбинатах, построенных по типовым проектам, уже не применяется.

Коэффициент теплопередачи – количество тепла, передаваемое через единицу поверхности в единицу времени при разности температур в 1 градус.

Продолжение примера расчетов

Расчет трубной системы отопления заключается в определении диаметра труб и их длины.

4) пример расчета трубной системы при температуре входящей воды 90оС, выходящей из теплицы 75оС

k т.тр. – коэффициент теплопередачи труб. Для гладких труб k т.тр. = 12 Вт/м2 х град

S отоп. – площадь поверхности труб

tвн – ср. температура воды в системе (здесь = (90+75) :2)

552 000 = 12 х S отоп. х (82,5 – 15)

S отоп = 552000 : (12 х 67,5) = 681,48 м2

180 000 = 12 х 681 х (Х – 18)

(Х – 18) = 180 000 : (12 х 681)

Перепад температур должен быть в пределах 20…25оС, то есть около 50/30, чтобы при t н = 3оС в теплице было +18оС.

5) Расчет системы отопления для типового проекта 810-99 (kогр = 1,22) для условий Москвы (tмин = -31оС)

Q сист.отоп. = 1,25 х 6,4 х 10 000 х 1,22 х (15 –(-31)) = 4489,6 кВт/га

Для всего шестигектарника (МГ: в данном случае не учитываются теплопотери соединительного коридора)

Q огр.= 1,22 х 60 000 х 6,4 х 46 = 21,55 мВт

Q инф. = 0,25 х 1,22 х 60 000 х 6,4 х 46 = 5,38 мВт

Q сист.отоп. = 21,55 + 5,38 = 26,93 мВт

Теплопотери через цоколь

k т для бетона 2 Вт/м2 х град

высота цоколя 0,30 м

размеры гектарной теплицы 75 х 141 м, сторона, прилегающая к коридору, не учитывается

S цок = 0,3(75 + 141 + 141) = 107,1 м2

Q цок. = k т. х S цок х (tвн – t н) = 2 х 107,1 х 46 х 6 = 59119 Вт = 0,06 мВт

3. Расчет элементов системы отопления

Расчет теплопотерь через почву (по методике для теплиц без почвенного обогрева).

Теплопотери через почву меньше всего в центре проекции теплицы и возрастают по направлению к периметру. Вся площадь теплицы условно делится на 4 зоны (см. рисунок) с шагом 2 м.

При этом значения коэффициентов теплопередачи для каждой зоны следующие:

Площадь каждой зоны в данном случае следующая:

S 1 = 141 х 2 х 2 + (71-4) х 2 х 2 = 832 м2

S 2 = (141-4) х 2 х 2 +(71 –8) х 2 х 2 = 800 м2

S 3 = (141-8) х 2х 2 + (71-12) х 2 х 2 = 768 м2

S 4 = 10000 – 832 – 800-768 = 7600 м2

Q почв. 1 = 0,465 х 832 х 46 = 17,8 кВт

Q почв. 2 = 0,232 х 800 х 46 = 8,5 кВт

Q почв. 3 = 0,116 х 768 х 46 = 4,1 кВт

Q почв. 4 = 0,07 х 7600 х 46 = 2,4 кВт

Q почв. = 17,8 + 8,5 + 4,1 + 2,4 = 32,8 кВт = 0,032 мВт/га

Q почв. сум = 0,032 х 6 = 0,2 мВт

Виды теплопотерь, мВт

значение

% от общего

Трубная система отопления

Какова должна быть поверхность системы обогрева?

Q общ. = k т х S (tср – tн)

S = Q общ./ k т х (tср – tн)

k т = 12 Вт/м2 х град

Q общ.= Q потерь = 27,19 мВт = 27 190 000 Вт

Вода от котельной 95/70 оС

S = 27 190 000 /12 х ((95+70):2 –15) = 27 190 000 /810 = 33 568 м2

Сколько км труб необходимо для 6-гектарного блока?

2 дм труба имеет поверхность 1 м = 0,18 м2

33 568 : 0,18 = 186 488 м = 186,5 км

1 пог м = 4,5 кг металла

Расположение труб отопления

50% труб располагаются в зоне растений

3 системы: надпочвенный, боковой, кровельный (МГ: как уже говорилось, сегодня различают еще и подпочвеный, и вегетационный (ростовая труба))

Боковой и кровельный обогрев жестко присоединены к магистрали, надпочвенный (М.Г.: и ростовые трубы) подсоединен с помощью гибких шлангов. Диаметр магистральной трубы 219 мм внешний и 200 мм внутренний.

Конвекторы и оребренные трубы (МГ: оребренные трубы очень трудно мыть и дезинфицировать)

Чем выше параметры теплоносителя, тем больше отдача тепла и меньше расходы металла. Применяются пластиковые и стеклянные трубы. (МГ: я видела стеклянные трубы в производстве, главный недостаток – тракторист, не вписавшийся в поворот, вдребезги разносит всю систему. Починить трудно.)

Подпочвенный обогрев

От стоек теплицы отступают 400 мм, потом шаг раскладки труб подпочвенного обогрева 800 мм. На стандартную секцию шириной 6,4 м (Антрацит) укладывают 8 труб. Для обогрева почвы нельзя использовать металлопластиковые трубы.

В ангарных теплицах применяют контурный обогрев. Подпочвенный обогрев не нужен только в теплицах с водонаполненной кровлей (МГ: в производство такая конструкция не пошла, но одно время испытывалась на Овощной станции ТСХА), так как вода излучает тепло и не дает выхолаживаться почве.

Распределение труб в теплице.

В целом 45 км /га, 6 труб боковое отопление (2592 м, отдельный стояк), регистры (калачи) длиной 36/ 72 м.

Надпочвенный обогрев 12 672 м

Подкровельный обогрев 45 – 12,6 – 2,5 = 29,9 км

При пролете длиной 75 м получается 1359 м на пролет (22 пролета в стандартной Антрацитовской теплице) или 18 труб.

Это создает значительное затенение, поэтому по 2 трубы с кровли (4 с пролета), то есть 6,6 км, добавили вниз к стойкам для надпочвенного обогрева.

Вверху осталось 14 труб.

Распределение труб по системам отопления

Источник статьи: http://www.gidroponika.su/gidroponika-teorija.html/48-teplicy/110-otoplenie-teplic.html

Читайте также:  Грунт для огорода хвойный
Оцените статью