Климатические контроллеры для теплиц

Система управления климатом теплицы

Компания: Быстрые Проекты

Город: Дагестан. Махачкала

Используемая продукция ОВЕН:

Заказчиком, который перенял голландский опыт, было создано техническое задание с описанием математической модели управления климатом теплицы. Модель предусматривает нейросетевой (самообучаемый) алгоритм, который позволяет определять оптимальные климатические параметры различных частей теплицы в соответствии с внешними условиями окружающей среды.

По началу при реализации проекта были некоторые сомнения, что контроллер ОВЕН ПЛК110-30 [М02] справится с данной задачей. Однако он прекрасно с ней справляется и показывает хорошие результаты по производительности.

В теплице присутствует собственный раздел метеостанции, который собран на базе покупных элементов и созданного прикладного программного обеспечения.

Система визуализации создана от общего к частному. При взгляде на общий кадр агроному должны быть понятны все основные параметры работы зон, такие как температура стекла, направление ветра, интенсивность солнечной активности, наличие/отсутствие осадков, сила ветра, температура наружного воздуха.

В системе присутствует 16 фрамуг, которые обеспечивают вентиляцию и регулирование качественных параметров микроклимата внутри теплицы: качества воздуха, СО2, температуры и влажности.

Создана зона управления тепловым пунктом. Осуществляется управление центробежными насосами и регулирование 8-ю контурами отопления. Горячая вода подается от внешней котельной.

Для рассадного отделения создана система подсветки физиологическим спектром по расписанию с коррекцией по уровню освещения.

В системе управления используется оборудование ОВЕН:

  • Контроллер ПЛК110-30 [М02].
  • Преобразователь интерфейсов АС3-М.
  • Датчик СО2 ПКГ100-СО2 – 2 шт.
  • Датчик температуры и влажности ПВТ100 – 4 шт.
  • Релейные модули вывода МВ110-224.8Р – 7 шт.

Из прочего оборудования используются датчики: силы ветра YGS-FS, направления ветра YGS-FX, качества воздуха REGELTECHNIK, дождя Rain and snow Transmitter sensor и солнца Solar Radiation Sensor TSIS. А также модули подключения цифровых термосопротивлений .

Задание микроклимата позволяет выдерживать определенную температуру и градиент прироста температуры в 4 промежутках времени суток (24 часа делится тремя уставками). При переходе заданных временных границ температура начинает меняться от одного значения к другому с заданной скоростью, обеспечивая плавность работы всей теплицы. Тем самым создается комфортная среда для роста растений.

Гибкие в настройках графики MasterSCADA обеспечивают детальный анализ ситуации, происходившей в системе с удобным просмотром истории происходивших изменений.

Во всех зонах теплицы создана система плавного изменения температур в соответствии с задаваемым расписанием. Изменение температуры менее чем градус в минуту позволяет избавить растения от стресса и повысить их урожайность.

Для удешевления системы использовались однопроводные китайские цифровые датчики температур формата 18B20.

Проработана причинно-следственная диаграмма, предназначенная для организации защиты оборудования. При возникновении соответствующей причины на экране загорается красным цветом пиктограмма. На связанном с этими защитами оборудовании на соответствующих мнемосхемах загораются ключи, которые показывают, что данное оборудование включить (открыть) невозможно, оно находится в безопасном режиме. Данные блокировки можно отключить. При нажатии на любую из пиктограмм возникает диалоговое окно, в котором можно пересмотреть положение ключа деблокировки, введя пароль. В этом случае пиктограмма подсвечивается синим цветом.

Читайте также:  Ступеньки для садовой беседки

В настройках системы нейроалгоритма присутствует большое количество настроечных параметров. Авторские права на алгоритм автоматического управления теплицы принадлежат Заказчику данной системы.

Источник статьи: http://owen.ru/project/greenhouse_climate_control_system

Система управления климатом в теплице: варианты исполнения

Системы отопления теплиц сильно различаются степенью сложности и дороговизны, однако в целом реализовать обогрев помещения не так уж трудно. А возможна ли полноценная система климат-контроля для этого помещения? Как она может быть реализована?

Попробуем найти ответ.

Узел управления климатом.

Автоматическая вентиляция

Общие принципы

Это простейший и наиболее простой в реализации способ автоматизировать управление климатом. Его суть в том, что при достижении определенной температуры автоматическое устройство с несложным приводом, работающим от автономного источника энергии или полностью энергонезависимым, открывает форточку и проветривает теплицу.

Уточним: возможности такой системы климат-контроля вполне сообразны ее невысокой стоимости.
Подразумевается, что нагрев обеспечивается исключительно солнечными лучами при ограниченной вентиляции.
Проветривание снизит температуру лишь при условии, что на улице она существенно ниже.

Реализация

Возможны несколько решений.

  • Наиболее дорогие и сложные устройства — электронные термостаты с сервоприводами, питающимися от батареек или сети. При достижении заданной пороговой температуры термостат подает питание на привод, который приводит в движение фрамугу или форточку вплоть до момента срабатывания концевого выключателя.Очевидное достоинство этого класса устройств — универсальность: они могут открывать и закрывать створки любого размера. Очевидный недостаток — сравнительно низкая отказоустойчивость. Разряженная батарейка или сбой подачи электричества может стоить вам урожая.

Механизм с электропитанием и цифровым термодатчиком.

Любопытно: термостаты с питанием от сети могут не только распахивать форточку или фрамугу, но и включать принудительную вентиляцию.

Такие схемы автоматической вентиляции несколько дороже, зато сохраняют эффективность в полное безветрие.

  • Биметаллические приводы работают за счет того, что разные металлы имеют разные коэффициенты расширения при нагреве. Стоит спаять две разнородных пластины вместе — и при изменении температуры получившаяся конструкция изогнется в ту ли другую сторону.
  • Наконец, пневматические и гидравлические устройства используют тот факт, что воздух и многие жидкости сильно расширяются при нагреве. Достаточно приладить к наполненной воздухом емкости большого объема поршень — и форточка при достижении определенной температуры станет открываться самостоятельно.

Очумелые ручки

Система последнего типа может быть с минимальными затратами сооружена своими руками.

Принципиальная схема механизма.

Инструкция по изготовлению довольно проста; список необходимого включает самые простые и доступные материалы:

  • Алюминиевую канистру.
  • Цилиндр, склеенный из поликарбоната. После сборки теплицы у вас наверняка останутся обрезки, которые пойдут в дело.
  • Надувной шарик.
  • Шланг — садовый, кислородный, ацетиленовый или любой другой.
  • Вязальную спицу и кусок пенопласта — шток и поршень.
  • Тонкий шнур или рыбацкую леску.
  • Стальную или алюминиевую пластинку, которая пойдет на коромысло.
  • Герметик и скотч.
Читайте также:  Клумба пионы с розами

Собственно, приведенная схема не требует особых комментариев.

Уделим внимание лишь паре моментов:

  1. Соединение канистры с шлангом должно быть абсолютно герметичным. Шарик тоже стягивается на шланге максимально плотно.
  2. Импровизированный поршень должен ходить в направляющем цилиндре с минимальным сопротивлением.

Особенности

Если система электронного контроля способна реагировать на изменение температуры почти мгновенно, то биметаллические, пневматические и, в наибольшей степени, гидравлические системы обладают определенной инерционностью. Когда в межсезонье солнечная погода может смениться резким похолоданием, лучше быть рядом и проконтролировать срабатывание автоматики.

На фото — гидравлическое устройство автоматического проветривания. Оно производятся промышленно и стоит около 1000 рублей.

Бытовой кондиционер

В регионах с теплым и умеренным климатом система отопления в теплицах (а заодно и полноценная защита от их перегрева) может представлять собой обычный бытовой кондиционер. Сплит-система монтируется на любую достаточно прочную стену и устанавливается в автоматический режим поддержания заданной температуры. При существенном отклонении от нее в верхнюю сторону, устройство переходит в режим охлаждения, в нижнюю — в режим нагрева.

Поскольку бытовой кондиционер — ничто иное, как простейший тепловой насос, электроэнергии он израсходует куда меньше, чем любой обогреватель. Питание требуется не для выработки тепла, а для его транспортировки из низкопотенциального источника. При температуре около нуля градусов разница в затратах между калорифером и кондиционером может достигать 3-4 раз.

Предпочтительный выбор — инверторные модели. За счет преобразования переменного тока в постоянный они позволяют гибко управлять работой компрессора и снижать мощность по мере необходимости, что обеспечивает опять-таки заметную экономию электричества.

Достоинства

Такая система климат-контроля хороша своей полной автоматизацией: кондиционер способен поддерживать заданную температуру в рамках своих возможностей неограниченное время. Кроме того, в режиме охлаждения он решит проблему избыточной влажности. Конденсат, оседающий на теплообменнике, будет удаляться за пределы теплицы.

Совет: такая несложная система тепличного климат-контроля может быть совмещена с автоматическим или капельным поливом, что увеличит ее автономность.
Из соображений экономии электричества стоит установить и описанную выше автоматическую систему проветривания: в этом случае кондиционер включается в режим нагрева, а охлаждение обеспечивается за счет вентиляции теплицы.
Бытовой кондиционер вполне может обеспечить приемлемый климат в теплице.

Недостатки

Для небольшой теплицы такая реализация обогрева и охлаждения достаточно эффективна, но имеет ряд ограничений.

  • Нижний порог температуры, при которой бытовой инверторный кондиционер сохраняет работоспособность — -25С у лучших моделей. У большинства температурный минимум еще скромнее — -5 — -15 градусов.
  • Чем ниже температура на улице, тем меньше киловатт тепла транспортируется в теплицу в пересчете на единицу электрической мощности.
  • Несмотря на эффективность теплового насоса, в настоящее время он проигрывает в экономичности газовому отоплению, что бы ни утверждали продавцы этих устройств.

Стационарные тепловые насосы

Кондиционер — лишь частный случай теплового насоса, получающий низкопотенциальное тепло из атмосферного воздуха. Но ведь воздух — не единственный источник тепловой энергии!

Читайте также:  Как гнуть профтрубу для теплицы

Откуда еще она может извлекаться?

  • Насосы, работающие по схеме грунт — воздух, используют геотермальное тепло. На сравнительно небольшой глубине почва имеет постоянную температуру в 10-12 градусов. Заглубленные зонды выполняют функцию теплообменников: зимой они отбирают у грунта тепло, а в летнюю жару — наоборот, отдают.
  • Источником тепла или холода может послужить и вода. В этом случае наружный теплообменник в виде десятков, а то и сотен метров полимерной трубы помещается в расположенный на минимальном удалении незамерзающий водоем.Альтернативное решение — отбор воды из одной скважины и последующий ее слив после прохождения теплообменника в другую.

Принципиальная схема теплового насоса.

В отличие от всех типов тепловых насосов воздух-воздух, устройства, работающие по этим схемам, независимы от температуры на улице и климатической зоны. Их эффективность не уменьшается с морозами, и в отсутствие магистрального газа это прекрасное решение.

Единственный недостаток — высокая цена, как самого устройства, так и работ по его монтажу.

Однако: это одноразовое вложение, которое будет обеспечивать дешевое и эффективное отопление не менее полувека.
С учетом неизбежного и быстрого подорожания газа в обозримом будущем (это все-таки невосполнимый ресурс, запасы которого заканчиваются) оно выглядит весьма перспективным.

Промышленные комплексные решения

Для промышленных теплиц большой площади современный рынок предлагает комплексные решения, обеспечивающие автоматизацию всех основных процессов:

  • Отопления;
  • Вентиляции;
  • Контроля влажности;
  • Полива;
  • Контроля содержания в атмосфере углекислоты;
  • Подкормки растений минеральными удобрениями.

Комплексное решение контролирует не только температуру, но и влажность, питание растений и массу других параметров.

Поскольку решение ориентировано на промышленный сектор, не станем вдаваться в мелкие технические детали.

Обрисуем лишь основные моменты реализации.

  • Система отопления теплиц в данном случае представляет собой полноценную котельную, работающую на газе. Все основные параметры — температуры подачи и обратки, рабочее давление в контуре водяного отопления, расход газа — контролируются обычным компьютером под управлением ОС Windows.
  • Тот же компьютер, оснащенный весьма специфичным программным обеспечением, контролирует при посредстве сервоприводов положение форточек. Оно сообразуется не только с внутренней температурой, но и с показаниями внешних термодатчиков, с направлением ветра, уровнем освещенности и количеством СО2 в атмосфере теплицы.

Элемент графического интерфейса программного обеспечения.

  • Для защиты от прямых солнечных лучей служит подвижный теплозащитный экран. При недостатке света включается локальная система освещения.
  • Полив — капельный. Вместе с водой к корням растений подается автоматически дозированная подкормка.
  • Для равномерного нагрева и влажности служит принудительная вентиляция внутри теплицы. Она может использоваться и для воздухообмена с окружающим пространством.

Вывод

Системы полноценного климат-контроля для теплиц существуют и весьма эффективны. Однако организация ухода за растениями без вмешательства человека потребует значительных вложений. Как всегда, видео в этой статье продемонстрирует наглядные нюансы по теме. Успехов!

Источник статьи: http://oteplicah.com/kommunikacii/ventilyacija/199-sistema-upravleniya-klimatom-v-teplice

Оцените статью