Строительные калькуляторы — ProstoBuild.ru
Расчет ветровой нагрузки
При расчете ветровой нагрузки необходимо учитывать многие ее составляющие, но для упрощения всего расчета будем считать ее основную составляющую – среднюю составляющую основной ветровой нагрузки Wm. Для наглядности в таблицу ниже сведены все составляющие ветровой нагрузки согласно СП 20.13330.2016:
Формула расчета основной средней ветровой нагрузки следующая:
Где Wm – нормативное значение основной средней ветровой нагрузки, кг/м2
Wo – нормативное значение ветрового давления, кг/м2
k – коэффициент, который учитывает влияние высоты на давление ветра
с – аэродинамический коэффициент
1. Его можно найти у нас в калькуляторе снеговой/ветровой нагрузок, выбрав необходимый город
2. В таблице ниже, зная свой ветровой район:
Теперь давайте разберемся с коэффициентом k.
Данный коэффициент зависит от эквивалентной высоты Ze. Обратите внимание, что это не просто высота до расчетной отметки, и искать ее необходимо следующими вариантами.
Для разных участков по высоте бывают разные эквивалентные высоты
После того, как вы нашли эквивалентную высоту Ze, зная тип вашей местности, находим коэффициент k:
Типы местности:
А – открытые местности (степи, лесостепи, побережье морей, озер, пустыни, тундра, сельские местности с высотой построек до 10 м)
В – городские территории, лесные массивы и другие территории с высотой построек более 10м
С – городские районы с плотной застройкой зданиями высотой более 25м
Завершающим этапом определения средней составляющей ветровой нагрузки является нахождение аэродинамического коэффициента c.
Данный коэффициент может быть как положительным, так и отрицательным, и зависит от формы здания или сооружения и направления ветра. Давайте рассмотрим основные формы зданий и сооружений, с которыми приходится работать.
1. Прямоугольные здания с двускатными покрытиями
a. Ветер направлен сбоку
Если на участке стоит буква вместо цифры, то значение коэффициента необходимо определять интерполяцией в зависимости от уклона крыши.
2. Отдельно стоящие плоские сплошные конструкции (стены, заборы, рекламные щиты)
На рисунках показаны разные участки здания и сооружения и соответствующие аэродинамические коэффициенты с для них.
После того, как все три неизвестные найдены – легко найти нормативное значение основной средней ветровой нагрузки.
Напоминаем формулу Wm = Wo·k·c
При нахождении коэффициента k имеем следующее: d=12 м, h=7 м. При h≤d —> Ze=h=7 м.
Найдем коэффициент k методом интерполяции между 0,5 и 0,65. Получаем k = 0,56.
Далее находим аэродинамический коэффициент с. Здесь b=12м, d=6м, h1=4м, h=7м
е1 – это наименьшее из b или 2·h1. е1=2·4=8м (меньше чем b=12м)
e – это наименьшее из b или 2·h. е=12м (меньше чем 2·h =2·8=16 м)
Зная все размеры, получаем следующее распределение коэффициентов c:
И путем умножения Wo на k и на с мы получаем окончательное распределение ветровой нагрузки:
Для нахождения расчетной ветровой нагрузки необходимо каждое значение еще умножить на коэффициент надежности по ветровой нагрузке равный 1,4.
От автора:
Если данная статья была Вам полезна, то буду очень благодарен, если Вы поделитесь ей с друзьями и коллегами, и сохраните себе в закладки.
Также в ближайшее время будет реализован калькулятор по определению ветровой нагрузки.
Источник статьи: http://prostobuild.ru/raschet/251-raschet-vetrovoy-nagruzki.html
Расчет ветровой нагрузки по формуле
Что такое ветровая нагрузка
Переток воздушных масс вдоль поверхности земли происходит с разной скоростью. Натыкаясь на какое-либо препятствие, кинетическая энергия ветра преобразуется в давление, создавая ветровую нагрузку. Это усилие может ощутить любой человек, двигающийся навстречу потоку. Создаваемая нагрузка зависит от нескольких факторов:
- скорость ветрового потока;
- плотность воздушной струи,— при повышенной влажности, удельный вес воздуха становится больше, соответственно, возрастает величина переносимой энергии;
- форма стационарного объекта.
В последнем случае на отдельные части строительного сооружения действуют силы, направленные в разные стороны, например:
- На вертикальную стену действует так называемое лобовое усилие, стремящееся сдвинуть объект с места. Противостоять этому усилию помогают несколько конструктивных решений:
- На крышу, кроме горизонтальных усилий (вдавливающих), действуют и вертикальные силы, образующиеся от разделения воздушного потока при ударе о стену. Вектор воздушного потока стремится поднять крышу, оторвать её от стен.
- Совокупность всех этих вихревых потоков создают ветровую нагрузку не только на крупные элементы здания, но распространяет свои влияния на все элементы строительного сооружения, — двери, окна, кровлю, водостоки, антенну, дымоход.
Расчёт усилий
Общая формула расчёта создаваемых усилий на вертикальную поверхность:
- Wm – норматив средней величины ветрового усилия на высоте h над землёй;
- Wo – норматив ветрового давления, зависящий от ветрового района; определяется согласно СНиП 2.01.07-85: карта 3, приложение 5; данные приведены в таблице 1;
- k – коэффициент пульсаций, таблица 2;
- C – аэродинамический коэффициент, зависящий от геометрии строительного сооружения, например, для наветренных фасадов его значение составляет 0,8.
Таблица 1. Норматив ветрового давления Wo:
Норматив ветрового давления | Ветровые районы | |||||||
Ia | I | II | III | IV | V | VI | VII | |
Wo, кПА | 0,17 | 0,23 | 0,30 | 0,38 | 0,48 | 0,60 | 0,73 | 0,85 |
Wo, кгс/м² | 17 | 23 | 30 | 38 | 48 | 60 | 73 | 85 |
Таблица 2. Коэффициент пульсаций давления ветрового потока k:
Высота h над уровнем земли, м | Коэффициент k для различных типов местности | ||
A | B | C | |
5 | 0,85 | 1,22 | 1,78 |
10 | 0,76 | 1,06 | 1,78 |
20 | 0,69 | 0,92 | 1,50 |
40 | 0,62 | 0,80 | 1,26 |
60 | 0,58 | 0,74 | 1,14 |
80 | 0,56 | 0,70 | 1,06 |
100 | 0,54 | 0,67 | 1,00 |
150 | 0,51 | 0,62 | 0,90 |
200 | 0,49 | 0,58 | 0,84 |
250 | 0,47 | 0,56 | 0,80 |
300 | 0,46 | 0,54 | 0,76 |
350 | 0,46 | 0,52 | 0,73 |
480 | 0,46 | 0,50 | 0,68 |
Пример: Стена.
Для местности типа В с высотой над уровнем земли 10 метров:
- коэффициент k = 1,06;
- для района вида III норматив ветрового давления Wo = 38 кгс/м²;
- для плоского фасада аэродинамический коэффициент C = 0,8.
Создаваемое усилие на один квадратный метр составит:
Wm = 38 кгс/м² * 1,06 * 0,8 = 32,224 кгс/м²
При высоте стены в 15 метров и ширине 25 метров общая ветровая нагрузка равна:
15 м * 25 м * 32,224 кгс/м² = 12084 кг или 12,084 тонны.
Окно.
На типовое окно с площадью 3 м² ветер будет давить с силой:
3 м² * 32,224 кгс/м² = 96,672 кг, — почти 100 кг.
Расчёт ветровой нагрузки на крышу
Основные повреждения на здании при сильных порывах ветра связаны с кровелькой конструкцией. По телевизору и в интернете приведено достаточно много наглядных примеров, как не только отдельные элементы кровли, но полностью вся крыша срывается под воздействием ветровой нагрузки.
При фронтальном направлении ветра происходит столкновение с фасадной частью здания и крышей. У вертикальной поверхности поток создаёт вихревые разнонаправленные векторы, — происходит деление на нижнюю, боковую и вертикальную составляющие.
- Нижнее направление – самое безопасное для здания, так как все усилия направлены в сторону фундамента, то есть одной из самой прочной и массивной части дома.
- Боковые составляющие воздействуют на фасадные части здания, окна, двери.
- Вертикальный поток направлен прямо на свес крыши и создаёт подъёмное усилие, стремящееся приподнять кровлю, сдвинуть её с места.
Воздушный поток, направленный на скат крыши, образует:
- касательное движение, скользящее вдоль кровли, огибающее конёк и уходящее прочь, — эта сила стремится сдвинуть крышу с места;
- перпендикулярное усилие, — нормаль, направленное внутрь кровли, создающее давление, могущее вдавить элементы крыши внутрь конструкции;
- с подветренной стороны ската крыши создаётся обратная сила, способствующая созданию подъёмной силы, — как у крыла самолёта.
Расчёт воздушной нагрузки на крышу, в зависимости от высоты её местонахождения над уровнем земли, определяется по формуле:
- W – нормативная величина усилия, создаваемого напором воздуха; определяется по картам в приложении к СП 20.133330.2011;
- k – коэффициент, показывающий зависимость давления от высоты над срезом верхнего уровня земли (таблица 3);
- C – аэродинамический коэффициент, учитывающий направление набегания воздушного потока на скат крыши (таблица 4 и 5).
Таблица 3. Коэффициент k для типов местности:
Высота над уровнем земли, метр | Тип местности | ||
A | B | C | |
≤ 5 | 0,75 | 0,5 | 0,4 |
10 | 1,25 | 0,65 | 0,4 |
20 | 1,25 | 0,85 | 0,55 |
40 | 1,5 | 1,1 | 0,8 |
60 | 1,7 | 1,3 | 1,0 |
80 | 1,85 | 1,45 | 1,15 |
100 | 2,0 | 1,6 | 1,25 |
150 | 2,25 | 1,9 | 1,55 |
200 | 2,45 | 2,1 | 1,8 |
250 | 2,65 | 2,3 | 2,0 |
300 | 2,75 | 2,5 | 2,2 |
350 | 2,75 | 2,75 | 2,35 |
≥ 480 | 2,75 | 2,75 | 2,75 |
Типы местности:
- A – открытые пространства на побережьях морей, озёр, водохранилищ, пустыня, степь, лесостепь, тундра;
- B – населённые пункты, лес, местность с равномерно распределёнными искусственными строениями с высотой больше 10 метров;
- C – территория города с плотным расположением строительных сооружений высотой более 25 метров.
Таблица 4. Значение коэффициента С для двускатной кровли при векторе потока в скат крыши:
Угол наклона ά | F | G | H | I | J |
15° | -0,9 | -0,8 | -0,3 | -0,4 | -1,0 |
0,2 | 0,2 | 0,2 | |||
30° | -0,5 | -0,5 | -0,2 | -0,4 | -0,5 |
0,7 | 0,7 | 0,4 | |||
45° | 0,7 | 0,7 | 0,6 | -0,2 | -0,3 |
60° | 0,7 | 0,7 | 0,7 | -0,2 | -0,3 |
75° | 0,8 | 0,8 | 0,8 | -0,2 | -0,3 |
Таблица 5. Значение коэффициента С для двускатной кровли при направлении потока во фронтон крыши:
Угол наклона ά | F | H | G | I |
0° | -1,8 | -1,7 | -0,7 | -0,5 |
15° | -1,3 | -1,3 | -0,6 | -0,5 |
30° | -1,1 | -1,4 | -0,8 | -0,5 |
45° | -1,1 | -1,4 | -0,9 | -0,5 |
60° | -1,1 | -1,2 | -0,8 | -0,5 |
75° | -1,1 | -1,2 | -0,8 | -0,5 |
Положительная величина аэродинамического коэффициента означает, что ветер давит на поверхность. Отрицательные показатели – поток создаёт разрежение у поверхности кровли, иными словами – «отсос» воздушной подушки.
Пример расчёта
Дано:
- здание находится на берегу большого внутреннего водоёма, местность относится к типу A;
- кровля расположена на высоте 10 метров, то есть коэффициент равен 1,25;
- преобладающие ветра направлены во фронтон крыши, отсюда аэродинамический показатель для крыши с наклоном ά = 30 равен C = -1,4;
- норматив для района Поволжья W = 53 кгс/м².
Расчётное значение ветрового усилия составит:
Wр = 0,7 * 53 кгс/м² * 1,25 * (-1,4) = -64,925 кгс/м².
Отрицательное значение показывает, что имеется усилие, стремящееся оторвать кровлю от всего здания.
При общих размерах кровли S = 30 м², общее усилие составит:
P = 30 м² * (-64,925 кгс/м²) = -1947,75 кгс, то есть почти две тонны.
Альтернативная энергетика
Ветровая нагрузка может принести и пользу, например, преобразуя силу ветра в ветрогенераторах. Так, на скорости ветра V = 10 м/сек, при диаметре круга в 1 метр, ветряк обладает лопастями d = 1,13 м и выдаёт порядка 200–250 Вт полезной мощности. Электроплуг, потребляя такое количество энергии, сможет вспахать за один час порядка полсотки (50м²) земли на приусадебном участке.
Если применить большие размеры ветрогенератора, – до 3 метров, и средней скорости воздушного потока 5 м/сек, можно получить 1–1,5 кВт мощности, что полностью обеспечит небольшой загородный дом бесплатным электричеством. При внедрении так называемого «зелёного» тарифа, срок окупаемости оборудования сократится до 3–7 лет и, в дальнейшем, может приносить чистую прибыль.
Справка. «Зелёный» тариф – это выкуп государством излишнего электричества у населения, полученного при использовании альтернативных (возобновляемых) источников энергии.
Источник статьи: http://homehill.ru/krovlya/stropil/raschet-vetrovoj-nagruzki.html