Как рассчитать вентиляцию для теплицы

Расчет вентиляционных параметров солнечной теплицы

Воздух из солнечной теплицы можно вывести либо на улицу, либо в жилой дом. В последнем случае воздух, прогретый в солнечной теплице:

  • обогревает жилой дом;
  • поддерживает температуру воздуха в солнечной теплице в желаемых пределах путем перемещения теплоты;
  • используется в качестве замещающего воздуха жилого дома, т.е. в солнечной теплице происходит предварительный нагрев свежего воздуха.

Во всех случаях необходимо иметь способ расчета, позволяющий выбрать размеры вентиляционных проемов либо между теплицей и наружной средой, либо между теплицей и жилой частью дома.

Приведенную ниже формулу можно использовать для определения размеров вентиляционных проемов, окон и дверей с целью обеспечения естественной вентиляции (в формуле не принято во внимание влияние ветра):

где Q — скорость воздушного потока, м 3 /мин; A — площадь минимального вентиляционного проема, м 2 ; Δt — разность температур и верхних и нижних проемов, °C; Δh — разность высот (от центра верхнего до центра нижнего проема), м.

Летом перегрев воздуха в теплице можно предотвратить путем организации достаточной вентиляции.

Пример

Предположим, что температура наружного воздуха составляет 30°C, а температура в верхней части теплицы — 38,5°C. Площадь минимального вентиляционного проема A = 0,6 м 2 , расстояние между вентиляционными проемами 2,5 м, объем теплицы равен 45 м 3 . Необходимо обеспечить обмен такого количества воздуха ежеминутно.

В этом случае, по приведенной выше формуле при
A = 0,6 м 2
Δt = 8,5°C
Δh = 2,5 м
Получим скорость воздушного потока равную 17,3 м 3 /мин.

Таким образом, скорость воздушного потока оказалась меньше, чем необходимо (45 м 3 /мин).

Если использовать вентиляционный воздухопровод, высота подъема которого на 3 м превышает высоту расположения верхнего вентиляционного проема, то разность высот Δh возрастет до 5,5 м. Одновременно с этим увеличится также разность температур Δt.

Допустим, что температура возрастет на 6,5°C по сравнению с температурой воздуха в верхней части теплицы, т.е. примерно на 2°C в расчете на 1 м разности высоты (летом при инсоляции).

В этом случае, по приведенной выше формуле при
A = 0,6 м 2
Δt = 15°C
Δh = 5,5 м
Получим скорость воздушного потока равную 34,0 м 3 /мин.

Следовательно, скорость воздушного потока все еще остается меньшей, чем необходимо. Путем увеличения площади вентиляционного проема примерно на 33% или увеличения высоты вентиляционного воздуховода примерно на 2 м можно достичь желаемой скорости воздушного потока.

Источник статьи: http://www.mensh.ru/articles/raschet-ventilyacionnyh-parametrov-solnechnoy-teplicy

Как рассчитать вентиляцию для теплицы

2.2. МЕТОДЫ ПРИБЛИЖЕННЫХ РАСЧЕТОВ СИСТЕМ ОТОПЛЕНИЯ И ВЕНТИЛЯЦИИ ТЕПЛИЦ

Наиболее часто уравнения теплового баланса используют для расчета мощности (теплопроизводительности) системы отопления. При этих расчетах не учитывают солнечную радиацию (ночной режим), потери тепла на вентиляцию. В начальный период развития растений теплообменом с растениями ввиду его незначительности пренебрегают. В этом случае система отопления воздуха должна компенсировать теплопотери через ограждение и на инфильтрацию. При отсутствии системы обогрева почвы учитывают и теплопотери через грунт:

В расчетных формулах внутреннюю температуру воздуха для зимних теплиц принимают равной 15 °С, температуру наружного воздуха — равной средней многолетней для самых холодных суток для данного географического района и периода эксплуатации.

Для упрощения расчетов теплопотери через почву, так же как и потери на инфильтрацию, выражают в долях теплопотерь через ограждение (в среднем 0,03).

Тогда общая теплопроизводительность системы, кВт, отопления

Если в теплице проектируется и система обогрева почвы, теплопроизводительность системы обогрева почвы рассчитывается без учета теплопотерь через почву:

где Когр — коэффициент ограждения теплицы [см. формулу (3)]; Кт — коэффициент теплопередачи, принимаемый в соответствии с указаниями в формуле (3); SТ — площадь теплицы, м 2 ; tвн — температура воздуха в теплице, °С; tн — расчетная температура наружного воздуха, °С.

Для расчета системы отопления почвы используют нормативный коэффициент:

Конструктивный расчет систем отопления теплиц проводят в зависимости от выбранного типа системы. Если теплицу предполагается отапливать при помощи металлических труб с циркулирующим теплоносителем, определяют необходимое количество труб, их массу и расположение в теплице. При расчете воздушно-калориферного отопления определяют количество агрегатов и их расположение в теплице.

Читайте также:  Тряпки для пола террасы

Количество агрегатов для обогрева теплицы устанавливают но обеспеченности необходимой суммарной теплопроизводительности:

где Qот.в — необходимая теплопроизводительность системы отопления, кВт; Qагр — теплопроизводительность отдельного агрегата, кВт (табл. 4 и 5); Кз -коэффициент запаса, равный 1,15.


Таблица 4. Технические данные воздушно-отопительных агрегатов


Таблица 5. Основные технические данные теплогенераторов и воздухонагревателей

При расчете водотрубной системы отопления вначале определяют требуемую площадь поверхности, м 2 , отопительных приборов

где Qот.в — необходимая теплопроизводительность системы отопления воздушного шатра, кВт; Кт — коэффициент теплопередачи для труб, равный 12 Вт/(м 2 •°С) для гладких труб, 10 Вт/(м 2 •°С) для полиэтиленовых труб подпочвенного обогрева и 6 Вт/(м 2 -°С) для стальных сребренных труб; tот.ср средняя температура труб в системе отопления, которая зависит от температуры теплоносителя:

для перепада температур в системе отопления 45-35 С (подпочвенный обогрев)

для перепада 95-70 °С

для перепада 130-70 °С

для перепада 150-70 °С

tВН — расчетная температура, воздуха в теплице, °С.

Ддя системы отопления используют трубы диаметром условного прохода (внутренним) 25, 32, 40, 50, 70, 80 и 100 мм. Общую длину, м, труб определяют по формуле L=Sот/Sтр,(15)

где SOT — площадь поверхности 1 м трубы (табл. 6) . Температурные графики систем отопления определяются в технических условиях на стадии проектирования теплицы энергоснабжающими организациями. В графике указывается температура первичного и вторичного теплоносителя для расчетной температуры наружного воздуха.


Таблица 6. Технические данные стальных и стеклянных отопительных труб

В качестве примера рассчитаем систему отопления для блочной остекленной теплицы площадью 1000 м 2 для условий эксплуатации в Подмосковье.

Теплопроизводительность системы отопления воздуха зимней блочной теплицы

Требуемая поверхность отопительных приборов (труб) при отопительном графике 130-70 °С составит

Общая длина труб внутренним диаметром 51 мм для теплицы

При расчете системы отопления индивидуальной пленочной теплицы вначале необходимо уточнить, в каких условиях будет работать проектируемая системама. Если теплица предназначена для ранней эксплуатации, что предполагает покрытие ее пленкой и включение системы отопления в апреле, то нужно в расчетах принимать температуру наружного воздуха, равную -15 С. При поздних сроках эксплуатации (май, июнь) достаточно обеспечить защиту растений от возвратных заморозков (до -5 °С). И в том, и в другом случае внутреннюю температуру принимают для огурцов +12 °С, для томатов +8 °С, для зеленньЪс культур +5 °С.

Рассчитаем потребную теплопроизводительность системы отопления для ранних и поздних сроков ввода в эксплуатацию пленочной теплицы типа «Урожай». Вначале определим коэффициент ограждения теплицы. Площадь ограждения теплицы (рис. 24) образуют боковые и торцевые стены и кровля, суммарная их поверхность


Рис. 24. К расчету коэффициента ограждения теплицы ‘Урожай’

Требуемая производительность системы отопления для раннего периода эксплуатации без системы отопления почвы

Система отопления для поздних сроков эксплуатации (для защиты растений от возвратных заморозков) будет значительно меньшей мощности (при условии поддержания в теплице температуры +5 °С):

Можно решить и обратную задачу, т. е. определить возможную защищенность растений при установке в теплице нагревательного устройства заданной производительности. Рассчитаем, какую температуру может обеспечить в теплице электротепловентилятор «Ветерок» мощностью 1,25 кВт при температуре наружного воздуха -5 °С. Воспользуемся формулой (10) для определения теплопроизводительности системы отопления:

Расчет показал, что указанное нагревательное устройство может быть использовано в теплице для защиты от заморозков до -5 С.

Систему отопления почвы обычно не рассчитывают, а выбирают по аналогии с промышленными типовыми теплицами. При использовании водотрубной системы из полиэтиленовых труб их располагают с шагом 0,75—0,80 м в овощных теплицах и 0,4 м в рассадных. Более подробно об устройстве отопления почвы будет рассказано ниже.

В индивидуальных теплицах с обогревом воздуха мощность системы отопления почвы принимается равной 40-50 Вт/м 2 , без обогрева воздуха 80-100 Вт/м 2 .

Систему вентиляции также специально не рассчитывают, а используют нормативные коэффициенты, полученные опытным путем. Для систем с естественной вентиляцией доля раскрывающихся фрамуг должна составлять 5-10% площади ограждения для центральных районов и 10-15% для южных районов. Для проектирования побудительной вентиляции при помощи электровентиляторных агрегатов пользуются нормативной кратностью воздухообмена. Для индивидуальных теплиц расчетная подача вентиляторов должна составлять не менее 1 м 3 /мин на 1 м 2 плдщади теплицы, для промышленных типовых теплиц блочного типа — 1,5 м 3 /мин, для ангарных теплиц — 2 м 3 /мин.

Читайте также:  Как сделать грядки под овощи

Источник статьи: http://www.berrylib.ru/books/item/f00/s00/z0000039/st010.shtml

Как выбрать систему вентиляции в теплицах

07 Февраля 2020, Пт

Система «воздух»: проектируем вентиляцию в теплицах

Медленный рост и созревание овощей в теплице, скудные урожаи, избыточное развитие патогенных микроорганизмов – все эти явления часто указывают на плохую организацию вентиляции. О том, как правильно выбрать и обустроить вентиляционную систему в теплицах разного типа – в нашей статье.

Зачем нужна вентиляция в теплицах?

  1. Снижает температуру. Несмотря на то, что главная задача теплицы – сохранять тепло, излишняя жара в ней тоже не желательна, она создает неблагоприятные условия для роста посадок. В частности, высокая температура стерилизует пыльцу, из-за чего не образуется завязь.
  2. Снижает влажность. Как правило, в непроветриваемых теплицах царит влажная атмосфера – все испарения остаются в помещении (им просто некуда уходить) и выпадают в виде конденсата обратно на грядки. Это вызывает переувлажнение почвы, а также создает благоприятные условия для размножения патогенных микроорганизмов (грибка, плесени, ложной мучнистой росы), которые замедляют рост и развитие растений.
  3. Поддержание уровня углекислого газа и кислорода. При высокой плотности зеленых насаждений в теплице уровень углекислого газа падает, что замедляет важнейший для жизнедеятельности растений процесс – фотосинтез. При правильной вентиляции они не страдают от недостатка СО 2 и получают кислород, который важен для развития корневой системы и помогает овощным культурам лучше усваивать питательные вещества.

Циркуляция воздуха. Правильное движение воздуха в теплице способствует равномерному распределению температуры, влажности, углекислого газа и кислорода. Таким образом, все растения в парнике находятся в одинаковых условиях. При проветривании в теплице образуется своего рода ветер, который укрепляет стебли и помогает опылению.

Типы вентиляции теплиц

Один из важнейших вопросов при проектировании теплицы – вид вентиляционной системы, которая будет использоваться в парнике. Все существующие на сегодняшний день системы вентиляции для теплиц можно разделить на две группы:

  • пассивные (естественные) действуют на основе природных факторов;
  • активные (принудительные, механизированные) предусматривают использование для вентиляции электрических устройств – притяжных, вытяжных и циркуляционных вентиляторов.

Пассивная вентиляция теплиц

Системы пассивной вентиляции теплиц используют свойство воздуха при нагревании расширяться и подниматься вверх. Чтобы она работала, необходимо обустроить форточки для притока воздуха в стенах теплицы и форточки для его оттока в кровле. По мере повышения температуры в парнике тяжелый холодный воздух над землей разогревается, поднимается и покидает теплицу через форточки или фрамуги в крыше. В то же время через вентиляцию в нижней части стен в теплицу поступает прохладный воздух снаружи.

В самом простом случае вентиляцию теплиц можно производить вручную. Для этого овощевод попросту открывает фрамуги, а после достижения нужной температуры – закрывает их. Разумеется, такая система подходит далеко не всем. Даже в парнике небольшого размера целый день открывать и закрывать фрамуги совсем не просто. А если у огородника нет возможности постоянно находиться на участке, растения в теплицах при резких перепадах погоды могут перегреться или, наоборот, замерзнуть.

Для точного контроля температуры и влажности в теплице с ручной вентиляцией необходимы два прибора: спиртовой термометр и гигрометр. Для наиболее точных показаний их закрепляют в нижней части теплицы, ближе к корням растений. В дневное время суток температура не должна подниматься выше 30°, а в ночное – опускаться ниже 8°. Оптимальный уровень влажности, в зависимости от растений, составляет 65–80 %.

Что нужно учесть при создании системы естественной вентиляции?
  1. Одинаковый объем притока и оттока воздуха. Общая площадь фрамуг и форточек в кровле и вентиляционных отверстий в стенах теплицы должна быть одинаковой. Их количество также должно быть равным. Если вытяжные отверстия окажутся уже, чем приточные, может образоваться сквозняк, а это вредно для плодовых культур.
  2. Соотношение размеров и количества вентиляционных отверстий. Чем меньше фрамуги и форточки, тем чаще они должны располагаться, и наоборот.
  3. Размеры вентиляционных отверстий. По площади вентиляционные отверстия в кровле и вентиляционные отверстия в стенах должны составлять примерно 10 % (для холодных регионов) или 20 % (для теплых регионов) от общей площади теплицы. Например, площадь теплицы равняется 500 кв. м. Значит, в средней полосе общая площадь боковых фрамуг должна составлять 50 кв. м, а на юге – 100 кв. м. Общая площадь верхних фрамуг также должна составлять 50 кв. м и 100 кв. м соответственно.
Читайте также:  Свайный фундамент винтовой для беседки

Преимущества пассивной системы вентиляции:

  • бюджетность;
  • простота установки;
  • энергонезависимость;
  • надежность и долговечность;
  • возможность автоматизировать эксплуатацию без сложных дополнительных устройств.

Недостатки пассивной системы вентиляции:

  • ручная вентиляция требует постоянного участия человека;
  • автоматические системы действуют медленно, что может привести к перегреву или замерзанию растений;
  • автоматические системы нельзя использовать в зимних теплицах;
  • невозможно настроить систему на определенную температуру;
  • неудобна в теплицах большой площади;
  • для эффективной естественной вентиляции необходима большая разница температур.

В жаркие дни, когда разница между наружной и внутренней температурой составляет всего 5–10 градусов, восходящие потоки практически отсутствуют, поэтому поступление свежего воздуха снаружи будет минимальным.

Как правило, системы пассивной вентиляции оправдывают себя в условиях дачных теплиц и небольших частных хозяйств. Когда выращивание урожая поставлено на поток, пассивная вентиляция недостаточно эффективна.

Принудительные системы вентиляции теплиц

В системах принудительной вентиляции приток свежего воздуха создается благодаря работе механических систем. Они обеспечивают гораздо более высокий уровень контроля, поэтому используются в больших коммерческих и промышленных теплицах. Обычно эти системы имеют терморегуляторы для автоматической настройки и способны самостоятельно включать и выключать вентиляторы, а также регулировать их скорость вращения – владельцу теплицы достаточно лишь установить желаемые показатели.

Помимо собственно вентиляторов, система также предусматривает наличие:

  • датчика температуры;
  • реле;
  • приточных и вытяжных вентиляционных каналов;
  • резервного источника питания (генератора) на случай отключения электричества.

Эффективность системы вентиляции увеличивают затеняющие и солнцезащитные сетки , которые позволяют избежать чрезмерного повышения температуры под палящими солнечными лучами.

Что нужно учесть при создании системы принудительной вентиляции?

  1. Наличие защиты от влаги. Система будет работать во влажной среде, поэтому всем ее составным частям необходима хорошая гидроизоляция и устойчивость к ржавчине.
  2. Мощность приточных и вытяжных вентиляторов. Так же, как и в случае с пассивной вентиляцией, объем поступающего воздуха должен быть равен объему удаляемого.
  3. Наличие подогрева. Если принудительная вентиляция устанавливается в зимний парник, следует позаботиться о подогреве воздухопотока, а также дополнительных вентиляторах, чтобы находящиеся под приточным каналом растения не замерзли.
  4. Производительность вентиляторов. Производительность вентилятора измеряется в кубометрах в час. В жаркие летние месяцы воздух в теплице должен обновляться раз в 1–3 минуты. Предположим, наша теплица имеет размеры 2 х 5 м и высоту 3 м – таким образом, ее объем составляет 30 куб. м. Чтобы воздух обновлялся каждые три минуты, или двадцать раз в час, нам необходимы приточные и вытяжные вентиляторы суммарной производительностью минимум 600 кубометров в час. Производительность вентилятора указывается в технической документации.

Расположение вентиляторов

Поскольку горячий воздух обычно поднимается вверх, вентиляторы лучше размещать в верхней части теплицы (например, один в торце, а второй в кровле). Однако в небольших парниках можно разместить приточный вентилятор в нижней, а вытяжной – в верхней части теплицы на противоположных торцах.

Преимущества принудительной системы вентиляции:

  • позволяет получать стабильный результат при любых условиях внешней среды;
  • создает закрытый микроклимат, защищая растения от проникновения вредителей извне;
  • успешно работает при минимальном участии человека;
  • подходит для хозяйств любого размера, в том числе многорядных теплиц ;
  • может использоваться для круглогодичной работы;
  • позволяет адаптировать систему вентиляции к нуждам конкретной культуры или конструкции теплицы.

В зависимости от типа выращиваемых культур и особенностей конструкции теплицы, система принудительной вентиляции может иметь свои особенности, например:

  • для использования в зимних теплицах нужна возможность устанавливать непродолжительный период подачи воздуха (до 5 минут);
  • в теплицах для огурцов устанавливают вентиляторы небольшой производительности, поскольку эта культура чувствительна к сквознякам и не любит пересушивания почвы;
  • в теплицах-термосах вентиляторы для отвода конденсата и выравнивания температур монтируются в воздуховодах.

Организация эффективной теплицы, которая позволит вам собирать богатый урожай независимо от погоды и внешних условий, – задача непростая и требующая участия специалистов. Обратитесь в компанию «ХозАгро», и мы предложим вам индивидуальное конструкционное решение, полностью отвечающее вашим пожеланиям и потребностям. Любые вопросы вы можете задать нашим специалистам по телефонам 8(800)250-83-04

Источник статьи: http://hoz-agro.com/news/sistema-ventilyatsii-v-teplitsah

Оцените статью