- Функциональная схема автоматического управления микроклиматом теплицы по нескольким параметрам
- 2. Функциональная схема автоматического управления микроклиматом теплицы по нескольким параметрам
- Делись добром 😉
- Похожие главы из других работ:
- 1.3 Требования к системе управления и параметрам, подлежащим контролю, регулированию и сигнализации
- 4. Функциональная схема системы автоматизации, выбор технических средств контроля и управления АСУТП
- 3. Выбор системы управления и составление структурной схему автоматического управления
- 1. Принципиальная схема автоматического управления микроклиматом теплицы по нескольким параметрам
- 3. Функционально-технологическая схема автоматического управления микроклиматом теплицы
- 1. ХАРАКТЕРИСТИКА ОБЪЕКТА УПРАВЛЕНИЯ, ОПИСАНИЕ УСТРОЙСТВА И РАБОТЫ СИСТЕМЫ САР, СОСТАВЛЕНИЕ ЕЕ ФУНКЦИОНАЛЬНОЙ СХЕМЫ. ПРИНЦИП АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ И ВИД СИСТЕМЫ
- 1. Характеристика объекта управления, описание устройства и работы САР, составление её функциональной схемы, принцип автоматического управления и вид схемы
- 1. Характеристика объекта управления, описание устройства и работы САР, составление её функциональной схемы, принцип автоматического управления и вид схемы
- 1. Характеристика объекта управления, описание устройства и работы САР, составление ее функциональной схемы. Принцип автоматического управления и вид системы
- 4. Функциональная схема системы автоматизации, выбор технических средств контроля и управления АСУТП
- 1.7.3 Разработка модели контроля помпажа и антипомпажного управления по виброакустическим параметрам
- 3.3 Функциональная схема управления нагревом металла в колпаковой печи
- 1. Функциональная схема объекта управления
- 2. Характеристика объекта управления, описание устройства и работы САР, составление её функциональной схемы. Принцип автоматического управления и вид системы
- 3. Выбор системы управления и составление структурной схемы автоматического управления
- Контрольная работа: Автоматическое управление микроклиматом теплицы по нескольким параметрам с помощью установки ОРМ-1
Функциональная схема автоматического управления микроклиматом теплицы по нескольким параметрам
2. Функциональная схема автоматического управления микроклиматом теплицы по нескольким параметрам
На функциональной схеме (рис. 2) объектом управления ОУ является теплица, ВО1 и ВО2 – воспринимающие органы датчиков температуры SK1…SK4, СО1 и СО2 – сравнивающие органы этих же датчиков, настроенные на максимальную и минимальную температуры, ВО3 и СО3 – воспринимающий и сравнивающий органы датчика влажности Sf, ПО1 и ПО2 – программные органы, реле времени КТ1 и КТ2; усилительные органы: УО1 – реле KV2, УО2 – реле KV3, УО3 – реле KV1, УО4 – реле KV4, УО5 – реле KV5, УО6 – реле KV6, УО7 – магнитные пускатели КМ3 и КМ5, УО8 – реле KV7, УО9 – магнитный пускатель КМ6, УО10 – магнитный пускатель КМ1; ИО1 – исполнительный орган, электродвигатели лебедок М2 и М3; ИО2 – электродвигатели вентиляторов и калориферов М4 и М5; ИО3 – электродвигатель М1 водонасосной станции.
3. Функционально–технологическая схема автоматического управления микроклиматом теплицы
Рис. 3. Функционально-технологическая схема управления микроклиматом теплицы
Элементы функционально-технологической схемы (рис. 3.):
1–1 – первичный измерительный преобразователь для измерения влажности, (датчик влажности Sf) установленный по месту;
1–2 – прибор, задающий программу продолжительности дождевания (реле времени КТ2);
1–3 – пусковая аппаратура для управления электродвигателем водонасосной станции (магнитный пускатель КМ1);
1–4 – электродвигатель водонасосной станции М1;
1–5 – закрывающий регулирующий орган при прекращении подачи энергии или управляющего сигнала (электромагнитный вентиль YA1);
2–1, 2–2 – приборы для измерения температуры, бесшкальные с контактным устройством (электроконтактные термометры SK1 и SK2);
2–3 – прибор, задающий дневной или ночной режим (реле времени КТ1);
2–4 – пусковая аппаратура для управления электродвигателями вентиляторов (магнитный пускатель КМ6);
2–5 – электродвигатели вентиляторов калориферов (М4 и М5);
2–6 – закрывающий регулирующий орган при прекращении подачи энергии или управляющего сигнала (электромагнитный вентиль YA2 и YA4);
4. Выбор типа технологического оборудования и расчет технических средств автоматики
Для привода водяного насоса используется электродвигатель М1 серии 4A112M493 номинальной мощностью РН=5,5 кВт [1].
Номинальный ток электродвигателя
А
Для приводов лебедок используются электродвигатели М2 и М3 серии 4A80B4 номинальной мощностью РН=1,5 кВт [1].
Номинальный ток электродвигателей:
Для приводов вентиляторов используются электродвигатели М4 и М5 серии 4A71B493 номинальной мощностью РН=0,75 кВт [1].
Номинальный ток электродвигателей:
1) автоматический выключатель QF1 серии АЕ-2040 IH=25А ITP=12,5 А [2]
2) магнитный пускатель КМ1 серии ПМЛ222 IH = 25 А [2]
3) автоматические выключатели QF2 и QF3 серии АЕ-2040 IH=10А ITP=4А [2];
4) магнитные пускатели КМ1…4 серии ПМЛ122 IH = 10 А [2]
5) автоматический выключатель QF6 серии АЕ-2040 IH=10А ITP=4 А [2]
6) магнитный пускатель КМ6 серии ПМЛ022 IH = 25 А [2]
7) диоды VD1…VD12 серии Д237Б [2]
8) трансформатор напряжения TV серии ОСОВ 0,25 220/24 В [3]
9) электроконтактные термометры SK1…SK5 серии ТК6 [3]
10) датчик влажности Sf серии ДРОВ-3 [3]
11) реле KV1…KV8 серии РПУ-1 [2]
12) программное реле времени КТ1 и КТ2 серии ВС-10 [2]
13) электромагнитные вентили YA1…YA5 серии ЭВ-2, Р = 30 Вт [2]
Список использованных источников
1. Асинхронные двигатели серии 4А: Справочник – М.: Энергоатомиздат, 1982 –529 с.
2. Элементы и устройства сельскохозяйственной автоматики, справочное пособие. Под ред. Н.И. Бохана – Мн.:Ураджай, 1989 – 315 с.
3. Елистратов А.В. Электрооборудование сельскохозяйственных предприятий: Справочник, – Мн.: Ураджай, 1986 – 328 с.
4. Краткий справочник по теплотехническим измерениям. Под ред. В.С. Чистякова – М: Энергоатомиздат, 1990 – 286 с.
5. Методические указания к выполнению функционально-технологических схем автоматизации технологических процессов сельскохозяйственного производства. – Кострома: издательство Костромской государственной сельскохозяйственной академии, 2000 – 24 с.
6. Рожнов А.В., Симонов А.В. Принципиальные электрические схемы автоматизированных технологических процессов сельскохозяйственного производства. – Кострома: КГСХА, 2001 – 55 с.
7. Автоматика и автоматизация производственных процессов / И.И. Мартыненко, Б.Л. Головинский, Р.Д. Проценко, Т.Ф. Резниченко, – М.: Агропромиздат, 1985. – 335 с.
Источник статьи: http://www.kazedu.kz/referat/94632/1
2. Функциональная схема автоматического управления микроклиматом теплицы по нескольким параметрам
На функциональной схеме (рис. 2) объектом управления ОУ является теплица, ВО1 и ВО2 — воспринимающие органы датчиков температуры SK1…SK4, СО1 и СО2 — сравнивающие органы этих же датчиков, настроенные на максимальную и минимальную температуры, ВО3 и СО3 — воспринимающий и сравнивающий органы датчика влажности Sf, ПО1 и ПО2 — программные органы, реле времени КТ1 и КТ2; усилительные органы: УО1 — реле KV2, УО2 — реле KV3, УО3 — реле KV1, УО4 — реле KV4, УО5 — реле KV5, УО6 — реле KV6, УО7 — магнитные пускатели КМ3 и КМ5, УО8 — реле KV7, УО9 — магнитный пускатель КМ6, УО10 — магнитный пускатель КМ1; ИО1 — исполнительный орган, электродвигатели лебедок М2 и М3; ИО2 — электродвигатели вентиляторов и калориферов М4 и М5; ИО3 — электродвигатель М1 водонасосной станции.
Делись добром 😉
Похожие главы из других работ:
1.3 Требования к системе управления и параметрам, подлежащим контролю, регулированию и сигнализации
Исходя из анлиза процесса САУ содержит следующие локальные системы стабилизации: а) скорость прессования; б) уровень жидкости в резервуаре; в) температуру масла в резервуаре; г) температуру в контейнере; д) отделение прессостатка; е) давление.
4. Функциональная схема системы автоматизации, выбор технических средств контроля и управления АСУТП
Функциональная схема автоматизации представлена графической части проекта (лист 2).
3. Выбор системы управления и составление структурной схему автоматического управления
Чтобы автоматизировать технологий процесс подачи колесной пары на демонтаж, необходимо решить вопрос выбора управления отдельными операциями процесса такими как: поперечным движением тележки.
1. Принципиальная схема автоматического управления микроклиматом теплицы по нескольким параметрам
В следяще-управляющую систему входят пять электроконтактных термометров ТК-6, двухпозиционный камерный влагорегулятор ВДК, электроконтактный флюгер и шкаф управления.
3. Функционально-технологическая схема автоматического управления микроклиматом теплицы
Рис. 3. Функционально-технологическая схема управления микроклиматом теплицы Элементы функционально-технологической схемы (рис. 3.): 1-1 — первичный измерительный преобразователь для измерения влажности.
1. ХАРАКТЕРИСТИКА ОБЪЕКТА УПРАВЛЕНИЯ, ОПИСАНИЕ УСТРОЙСТВА И РАБОТЫ СИСТЕМЫ САР, СОСТАВЛЕНИЕ ЕЕ ФУНКЦИОНАЛЬНОЙ СХЕМЫ. ПРИНЦИП АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ И ВИД СИСТЕМЫ
Рисунок 1.1. САР температуры поливной воды в теплице. Объектом управления (ОУ) рассматриваемой САР является скоростной водонагреватель. Регулируемой величиной является температура поливной воды .
1. Характеристика объекта управления, описание устройства и работы САР, составление её функциональной схемы, принцип автоматического управления и вид схемы
Объектом управления является котёл. Регулируемой величиной разрежения воздуха внутри топки. Целью управления является поддержание нормального топочного режима на постоянном заданном уровне с помощью поворотных заслонок.
1. Характеристика объекта управления, описание устройства и работы САР, составление её функциональной схемы, принцип автоматического управления и вид схемы
На рисунке 1 приводим схему заданной системы. Объектом управления(ОУ) является животноводческое помещение с электрокалорифером. Регулируемой величиной является температура и внутри сельскохозяйственного помещения.
1. Характеристика объекта управления, описание устройства и работы САР, составление ее функциональной схемы. Принцип автоматического управления и вид системы
Объектом управления рассматриваемой САР является агрегат АВМ. Регулируемой величиной является температура теплоносителя на выходе из сушильного барабана. Целью управления является поддержание температуры на постоянном заданном уровне.
4. Функциональная схема системы автоматизации, выбор технических средств контроля и управления АСУТП
Функциональная схема автоматизации представлена графической части проекта (лист 2).
1.7.3 Разработка модели контроля помпажа и антипомпажного управления по виброакустическим параметрам
Использование микропроцессорной элементной базы в современных системах управления обеспечивает возможность реализации следующего анализа вибраций на характерных для помпажа частотах.
3.3 Функциональная схема управления нагревом металла в колпаковой печи
Рассмотрим функциональную схему регулирования температуры металла в колпаковой печи. После садки рулонов металла на стенд, оператор через ЭВМ задаёт программу отжига, вносит данные металла (марку металла, вес, высота).
1. Функциональная схема объекта управления
Объектом управления является управляемый преобразователь, состоящий из системы управления и вентильного выпрямителя, двигателя постоянного тока и редуктора. Функциональная схема объекта управления представлена на рисунке1.1. Рис.1.1.
2. Характеристика объекта управления, описание устройства и работы САР, составление её функциональной схемы. Принцип автоматического управления и вид системы
САР температуры воздуха в теплице состоит из объекта управления и регулятора. Объектом управления (ОУ) рассматриваемой САР является теплица. Регулируемой величиной является температура воздуха в теплице.
3. Выбор системы управления и составление структурной схемы автоматического управления
Чтобы автоматизировать технологический процесс подачи подшипников, необходимо решить вопрос выбора управления отдельными операциями процесса такими.
Источник статьи: http://prod.bobrodobro.ru/2618
Контрольная работа: Автоматическое управление микроклиматом теплицы по нескольким параметрам с помощью установки ОРМ-1
Название: Автоматическое управление микроклиматом теплицы по нескольким параметрам с помощью установки ОРМ-1 Раздел: Промышленность, производство Тип: контрольная работа Добавлен 10:56:41 23 апреля 2010 Похожие работы Просмотров: 1336 Комментариев: 16 Оценило: 5 человек Средний балл: 3.8 Оценка: неизвестно Скачать | |||
На функциональной схеме (рис. 2) объектом управления ОУ является теплица, ВО1 и ВО2 – воспринимающие органы датчиков температуры SK1…SK4, СО1 и СО2 – сравнивающие органы этих же датчиков, настроенные на максимальную и минимальную температуры, ВО3 и СО3 – воспринимающий и сравнивающий органы датчика влажности Sf, ПО1 и ПО2 – программные органы, реле времени КТ1 и КТ2; усилительные органы: УО1 – реле KV2, УО2 – реле KV3, УО3 – реле KV1, УО4 – реле KV4, УО5 – реле KV5, УО6 – реле KV6, УО7 – магнитные пускатели КМ3 и КМ5, УО8 – реле KV7, УО9 – магнитный пускатель КМ6, УО10 – магнитный пускатель КМ1; ИО1 – исполнительный орган, электродвигатели лебедок М2 и М3; ИО2 – электродвигатели вентиляторов и калориферов М4 и М5; ИО3 – электродвигатель М1 водонасосной станции.
3. Функционально–технологическая схема автоматического управления микроклиматом теплицы
Рис. 3. Функционально-технологическая схема управления микроклиматом теплицы
Элементы функционально-технологической схемы (рис. 3.):
1–1 – первичный измерительный преобразователь для измерения влажности, (датчик влажности Sf) установленный по месту;
1–2 – прибор, задающий программу продолжительности дождевания (реле времени КТ2);
1–3 – пусковая аппаратура для управления электродвигателем водонасосной станции (магнитный пускатель КМ1);
1–4 – электродвигатель водонасосной станции М1;
1–5 – закрывающий регулирующий орган при прекращении подачи энергии или управляющего сигнала (электромагнитный вентиль YA1);
2–1, 2–2 – приборы для измерения температуры, бесшкальные с контактным устройством (электроконтактные термометры SK1 и SK2);
2–3 – прибор, задающий дневной или ночной режим (реле времени КТ1);
2–4 – пусковая аппаратура для управления электродвигателями вентиляторов (магнитный пускатель КМ6);
2–5 – электродвигатели вентиляторов калориферов (М4 и М5);
2–6 – закрывающий регулирующий орган при прекращении подачи энергии или управляющего сигнала (электромагнитный вентиль YA2 и YA4);
4. Выбор типа технологического оборудования и расчет технических средств автоматики
Для привода водяного насоса используется электродвигатель М1 серии 4A112M493 номинальной мощностью РН =5,5 кВт [1].
Номинальный ток электродвигателя
А
Для приводов лебедок используются электродвигатели М2 и М3 серии 4A80B4 номинальной мощностью РН =1,5 кВт [1].
Номинальный ток электродвигателей:
Для приводов вентиляторов используются электродвигатели М4 и М5 серии 4A71B493 номинальной мощностью РН =0,75 кВт [1].
Номинальный ток электродвигателей:
1) автоматический выключатель QF1 серии АЕ-2040 IH =25А ITP =12,5 А [2]
2) магнитный пускатель КМ1 серии ПМЛ222 IH = 25 А [2]
3) автоматические выключатели QF2 и QF3 серии АЕ-2040 IH =10А ITP =4А [2];
4) магнитные пускатели КМ1…4 серии ПМЛ122 IH = 10 А [2]
5) автоматический выключатель QF6 серии АЕ-2040 IH =10А ITP =4 А [2]
6) магнитный пускатель КМ6 серии ПМЛ022 IH = 25 А [2]
7) диоды VD1…VD12 серии Д237Б [2]
8) трансформатор напряжения TV серии ОСОВ 0,25 220/24 В [3]
9) электроконтактные термометры SK1…SK5 серии ТК6 [3]
10) датчик влажности Sf серии ДРОВ-3 [3]
11) реле KV1…KV8 серии РПУ-1 [2]
12) программное реле времени КТ1 и КТ2 серии ВС-10 [2]
13) электромагнитные вентили YA1…YA5 серии ЭВ-2, Р = 30 Вт [2]
Список использованных источников
1. Асинхронные двигатели серии 4А: Справочник – М.: Энергоатомиздат, 1982 –529 с.
2. Элементы и устройства сельскохозяйственной автоматики, справочное пособие. Под ред. Н.И. Бохана – Мн.:Ураджай, 1989 – 315 с.
3. Елистратов А.В. Электрооборудование сельскохозяйственных предприятий: Справочник, – Мн.: Ураджай, 1986 – 328 с.
4. Краткий справочник по теплотехническим измерениям. Под ред. В.С. Чистякова – М: Энергоатомиздат, 1990 – 286 с.
5. Методические указания к выполнению функционально-технологических схем автоматизации технологических процессов сельскохозяйственного производства. – Кострома: издательство Костромской государственной сельскохозяйственной академии, 2000 – 24 с.
6. Рожнов А.В., Симонов А.В. Принципиальные электрические схемы автоматизированных технологических процессов сельскохозяйственного производства. – Кострома: КГСХА, 2001 – 55 с.
7. Автоматика и автоматизация производственных процессов / И.И. Мартыненко, Б.Л. Головинский, Р.Д. Проценко, Т.Ф. Резниченко, – М.: Агропромиздат, 1985. – 335 с.
Источник статьи: http://www.bestreferat.ru/referat-103610.html