- Предварительный расчет навеса из профильной трубы, инструкция по изготовлению ферм
- Расчет и чертеж навеса
- Создание навеса из профильной трубы
- Виды креплений элементов навеса и их размеры
- Выбор профильных труб для изготовления ферм
- Расчёт и изготовление металлической фермы для навеса
- Общая методология расчёта
- Определение сочетанных воздействий и реакции опоры
- Дифференциальный расчёт усилий
- Определение сечения элементов
- Изготовление деталей для фермы
- Сборка на метизах или сваривание?
Предварительный расчет навеса из профильной трубы, инструкция по изготовлению ферм
Навес из профильной трубы – это очень распространенная конструкция, которую можно встретить едва ли не в каждом дворе. Из профильных труб можно сделать как небольшой навес над крыльцом, так и большую крышу для автомобильной стоянки – и конструкция в любом случае будет достаточно крепкой, красивой и простой в обустройстве. В данной статье будет рассмотрен расчет навеса из профильной трубы и его монтаж.
Расчет и чертеж навеса
Грамотный расчет и создание хорошего чертежа подразумевают соблюдение ряда стандартов и требований, предъявляемых к конструкциям из профильных труб. Впрочем, маленькие односкатные навесы не нужно рассчитывать так уж точно – небольшой козырек из профильной трубы большим весом не отличается, поэтому никакой опасности такого рода конструкции не представляют. Крупногабаритные навесы для стоянок или бассейнов нужно обязательно рассчитать, чтобы избежать проблем.
Чертеж навеса из профтрубы всегда начинается с эскиза – простого наброска, на котором указан тип конструкции, ее основные особенности и примерные габариты. Чтобы точно определить размеры будущего навеса, стоит провести замеры на участке, где конструкция и будет располагаться. В том случае, если навес будет пристраиваться к дому, то необходимо также измерить стену, чтобы точно знать размеры профильной трубы для навеса.
Можно рассмотреть методику расчета на примере конструкции, расположенной на площадке 9х7 м, расположенной перед домом с размерами 9х6 м:
- Длина навеса вполне может равняться длине стены (9 м), а вылет конструкции на метр короче ширины площадки – т.е. 6 м;
- Нижний край вполне может иметь высоту 2,4 м, а высокий стоит поднять до 3,5-3,6 м;
- Угол наклона ската определяется в зависимости от разницы высот нижнего и верхнего краев (в данном примере получается около 12-13 градусов);
- Для расчета нагрузок на конструкцию нужно найти карты, отображающие уровень атмосферных осадков в данном регионе, и отталкиваться от них;
- Когда размер конструкции и предполагаемые нагрузки рассчитаны, остается составить подробный чертеж, подобрать материалы и приступить к сборке навеса.
Чертежи ферм из профильной трубы для навеса должны отображаться отдельно со всеми подробностями. Также стоит помнить, что минимальный уклон навеса составляет 6 градусов, а оптимальное значение – 8 градусов. Слишком малый наклон не позволит снегу сползать самостоятельно.
Закончив с чертежами, подбирается соответствующий материал и его количество. Расчет нужно проводить точный, а перед приобретением стоит добавить около 5% допуска – при работе очень часто происходят небольшие потери, да и брак встречается нередко. По подобным расчетам можно сделать и каркас гаража из профильной трубы, что достаточно востребовано.
Создание навеса из профильной трубы
Конструкция навеса особой сложностью не отличается. Если чертеж навеса и необходимые для его сборки материалы уже есть, то можно приступить непосредственно к обустройству конструкции.
Изготовление навеса из профильной трубы осуществляется по следующему алгоритму:
- Сначала размечается и подготавливается участок под навес. Нужно подобрать место для фундаментных ям и выкопать их, а потом засыпать дно всех ям щебнем. В ямах устанавливаются закладные элементы, после чего фундамент заливается цементным раствором.
- К нижним частям стоек навеса привариваются стальные детали квадратной формы, размер которых совпадает с габаритами закладных деталей, как и диаметр отверстий под болты. Когда раствор застынет, столбы для навеса из профильной трубы прикручиваются к закладным деталям.
- Следующий шаг – сборка каркаса. Профильная труба на этом этапе размечается и разрезается на необходимые куски, и только после этого может осуществляться изготовление ферм из профильной трубы для навеса. Сначала при помощи болтов крепятся боковые фермы, потом фронтальные перемычки, а последними при необходимости обустраиваются раскосные решетки. Собранный каркас устанавливается на стойки и фиксируется выбранным способом.
Перед монтажом кровли навес нужно покрасить или покрыть антикоррозионным составом, чтобы предотвратить возможное разрушение материала – во время сборки базовое покрытие повреждается, и металлические детали в результате теряют сопротивляемость коррозии. Кроме того, нужно понимать, что внешняя обработка не защищает конструкцию от разрушения изнутри, поэтому края труб необходимо закрыть заглушками.
Виды креплений элементов навеса и их размеры
Для сборки элементов навеса из профильной трубы могут использоваться разные способы:
- Одним из наиболее распространенных способов фиксации навесов из профтруб является болтовое соединение. Качество такого соединения достаточно высокое, при этом сложностью оно не отличается. Для работы потребуется дрель со сверлом по металлу, а также болты или саморезы, диаметр которых зависит от сечения трубы.
- Еще один способ, которым крепятся элементы навеса – сварное соединение. Сварочные работы требуют определенных навыков, да и оборудование потребуется более дорогое, чем для болтового соединения. Впрочем, результат того стоит – сварка обеспечивает высокую прочность конструкции без ее ослабления.
- Для фиксации небольших навесов из труб диаметром до 25 мм можно использовать систему краб, которая представляет собой специальные хомуты разной формы (детальнее: «Какие бывают краб системы для профильных труб, правила выполнения соединений»). Чаще всего при монтаже навесов применяются Т-образные и Х-образные хомуты, обеспечивающие соединение трех или четырех труб соответственно. Для стяжки хомутов требуются болты с соответствующими гайками, которые часто приходится докупать отдельно. Главный недостаток краб-систем – возможность сборки конструкции только под 90-градусным углом.
Выбор профильных труб для изготовления ферм
Подбирая трубы для обустройства крупногабаритного навеса из профильной трубы, необходимо изучить следующие стандарты:
- СНиП 01.07-85, в котором описана зависимость между степенью нагрузок и весом составляющих элементов конструкции;
- СНиП П-23-81, описывающий методику работы со стальными деталями.
Эти стандарты и конкретные требования к конструкции позволяют точно рассчитать ее параметры, в частности, угол склона кровли, вид профильных труб и ферм. Читайте также: «Как сделать навес из профильной трубы правильно — инструкция».
Можно рассмотреть обустройство конструкции на примере пристенного навеса размерами 4,7х9 м, опирающийся на наружные стойки спереди, а сзади прикрепленный к зданию. Подбирая угол наклона, лучше всего остановиться на 8-градусном показателе. Изучив стандарты, можно узнать уровень снеговой нагрузки в регионе. В данном примере односкатная крыша из профильной трубы будет подвергаться нагрузке, составляющей 84 кг/м2.
Одна 2,2-метровая стойка из профильной трубы имеет вес около 150 кг, а степень нагрузки на нее получается около 1,1 тонны. Учитывая степень нагрузки, придется подбирать прочные трубы – стандартная круглая профильная труба с 3-мм стенками и диаметром 43 мм здесь не подойдет. Минимальные размеры круглой трубы должны составлять 50 мм (диаметр) и 4 мм (толщина стенки). Если в качестве материала используется труба диаметром 45 мм и толщиной стенки 4 мм. Используя такой материал, может быть сделана и калитка из профильной трубы своими руками, которая будет достаточно надежной и долговечной.
Выбирая фермы, стоит остановиться на конструкции из двух параллельных контуров с раскосной решеткой. Для фермы высотой 40 см можно использовать профильную трубу квадратного сечения с диаметром 35 мм и толщиной стенки 4 мм (прочитайте также: «Как сделать фермы из профильной трубы – виды и способы монтажа»). На изготовление раскосных решеток хорошо пойдут трубы диаметром 25 мм и толщиной стенки 3 мм.
Заключение
Собрать навес из профтрубы своими руками не так уж сложно. Для успешной работы необходимо грамотно спроектировать будущую конструкцию и ответственно подойти к каждому этапу реализации проекта – и тогда в результате получится надежная конструкция, способная простоять долгие годы.
Источник статьи: http://trubaspec.com/montazh-i-remont/predvaritelnyy-raschet-navesa-iz-profilnoy-truby-instruktsiya-po-izgotovleniyu-ferm.html
Расчёт и изготовление металлической фермы для навеса
Расчёт металлоконструкций стал камнем преткновения для многих строителей. На примере простейших ферм для уличного навеса мы расскажем, как правильно рассчитать нагрузки, а также поделимся простыми способами самостоятельной сборки без использования дорогостоящего оборудования.
Общая методология расчёта
Фермы применяют там, где использовать цельную несущую балку нецелесообразно. Эти конструкции отличаются меньшей пространственной плотностью, при этом сохраняют устойчивость воспринимать воздействия без деформаций благодаря правильному расположению деталей.
Конструкционно ферма состоит из внешнего пояса и заполняющих элементов. Суть работы такой решётки довольно проста: поскольку каждый горизонтальный (условно) элемент не может выдержать полную нагрузку ввиду недостаточно большого сечения, два элемента располагаются на оси главного воздействия (силы тяжести) таким образом, чтобы расстояние между ними обеспечивало достаточно большое сечение поперечного среза всей конструкции. Ещё проще можно объяснить так: с точки зрения восприятия нагрузок ферму рассматривают так, будто она выполнена из цельного материала, при этом заполнение обеспечивает достаточную прочность, исходя лишь из расчётного приложенного веса.
Конструкция фермы из профильной трубы: 1 — нижний пояс; 2 — раскосы; 3 — стойки; 4 — боковой пояс; 5 — верхний пояс
Такой подход крайне прост и зачастую его с лихвой хватает для сооружения простых металлоконструкций, однако материалоёмкость при грубом расчёте получается крайне высокой. Более подробное рассмотрение действующих воздействий помогает снизить расход металла в 2 и более раз, такой подход и будет наиболее полезным для нашей задачи — сконструировать лёгкую и достаточно жёсткую ферму, а потом собрать её.
Основные профили ферм для навеса: 1 — трапециевидный; 2 — с параллельными поясами; 3 — треугольный; 4 — арочный
Начать следует с определения общей конфигурации фермы. Обычно она имеет треугольный или трапециевидный профиль. Нижний элемент пояса располагают преимущественно горизонтально, верхний — под наклоном, обеспечивающим правильный уклон кровельной системы. Сечение и прочность элементов пояса при этом следует выбирать близкими к таким, чтобы конструкция могла поддерживать свой собственный вес при имеющейся системе опоры. Далее производится добавление вертикальных перемычек и косых связей в произвольном количестве. Конструкцию нужно отобразить на эскизе для визуализации механики взаимодействия, указав реальные размеры всех элементов. Далее в дело вступает её величество Физика.
Определение сочетанных воздействий и реакции опоры
Из раздела статики школьного курса механики мы возьмём два ключевых уравнения: равновесия сил и моментов. Их мы будем применять, чтобы вычислить реакцию опор, на которые положена балка. Для простоты вычислений опоры будем считать шарнирными, то есть не имеющими жёстких связей (заделки) в точке касания с балкой.
Пример металлической фермы: 1 — ферма; 2 — балки обрешётки; 3 — кровельное покрытие
На эскизе нужно предварительно отметить шаг обрешётки системы кровли, ведь именно в этих местах должны находиться точки сосредоточения приложенной нагрузки. Обычно именно в точках приложения нагрузки и размещаются узлы схождения раскосов, так проще выполнить расчёт нагрузки. Зная общий вес кровли и число ферм в навесе, нетрудно вычислить нагрузку на одну ферму, а фактор равномерности покрытия определит, равны ли будут приложенные силы в точках сосредоточения, или же они будут отличаться. Последнее, к слову, возможно, если в определённой части навеса один материал покрытия сменяется другим, имеется проходной трап или, например, зона с неравномерно распределённой снеговой нагрузкой. Также воздействие на разные точки фермы будет неравномерным, если её верхняя балка имеет скругление, в этом случае точки приложения силы нужно соединить отрезками и рассматривать дугу как ломанную линию.
Когда все действующие усилия проставлены на эскизе фермы, приступаем к вычислению реакции опоры. Относительно каждой из них ферму можно представить не иначе как рычаг с соответствующей суммой воздействий на него. Чтобы вычислить момент силы в точке опоры, нужно умножить нагрузку на каждую точку в килограммах на длину плеча приложения этой нагрузки в метрах. Первое уравнение гласит, что сумма воздействий в каждой точке и равняется реакции опоры:
- 200 · 1,5 + 200 · 3 + 200 · 4,5 + 100 · 6 = R2 · 6 — уравнение равновесия моментов относительно узла а, где 6 м — длина плеча)
- R2 = (200 · 1,5 + 200 · 3 + 200 · 4,5 + 100 · 6) / 6 = 400 кг
Второе уравнение определяет равновесность: сумма реакций двух опор будет в точности равна приложенному весу, то есть зная реакцию одной опоры, можно легко найти значение для другой:
- R1 + R2 = 100 + 200 + 200 + 200 + 100
- R1 = 800 – 400 = 400 кг
Но не ошибитесь: здесь также действует правило рычага, поэтому если ферма имеет существенный вынос за одну из опор, то и нагрузка в этом месте будет выше пропорционально разнице расстояний от центра масс до опор.
Дифференциальный расчёт усилий
Переходим от общего к частному: теперь необходимо установить количественное значение усилий, действующих на каждый элемент фермы. Для этого перечисляем каждый отрезок пояса и заполняющие вставки списком, затем каждый из них рассматриваем как сбалансированную плоскую систему.
Для удобства вычислений каждый соединительный узел фермы можно представить в виде векторной диаграммы, где векторы воздействий пролегают по продольным осям элементов. Всё, что нужно для вычислений — знать длину сходящихся в узле отрезков и углы между ними.
Начинать нужно с того узла, для которого в ходе вычисления реакции опоры было установлено максимально возможное число известных величин. Начнём с крайнего вертикального элемента: уравнение равновесия для него гласит, что сумма векторов сходящихся нагрузок равна нулю, соответственно, противодействие силе тяжести, действующей по вертикальной оси, эквивалентно реакции опоры, равной по величине, но противоположной по знаку. Отметим, что полученное значение — лишь часть общей реакции опоры, действующая для данного узла, остальная нагрузка придётся на горизонтальные части пояса.
Узел b
Далее перейдём к крайнему нижнему угловому узлу, в котором сходятся вертикальный и горизонтальный сегменты пояса, а также наклонный раскос. Сила, действующая на вертикальный отрезок, вычислена в предыдущем пункте — это давящий вес и реакция опоры. Сила, действующая на наклонный элемент, вычисляется по проекции оси этого элемента на вертикальную ось: из реакции опоры вычитаем действие силы тяжести, затем «чистый» результат делим на sin угла, под которым раскос наклонён к горизонтали. Нагрузка на горизонтальный элемент находится также путём проекции, но уже на горизонтальную ось. Только что полученную нагрузку на наклонный элемент мы умножаем на cos угла наклона раскоса и получаем значение воздействия на крайний горизонтальный сегмент пояса.
Узел a
- -100 + 400 – sin(33,69) · S3 = 0 — уравнение равновесия на ось у
- S3 = 300 / sin(33,69) = 540,83 кг — стержень 3 сжат
- -S3 · cos(33,69) + S4 = 0 — уравнение равновесия на ось х
- S4 = 540,83 · cos(33,69) = 450 кг — стержень 4 растянут
Таким образом, последовательно переходя от узла к узлу, необходимо вычислить действующие в каждом из них силы. Обратите внимание, что встречно направленные векторы воздействий сжимают стержень и наоборот — растягивают его, если направлены противоположно друг от друга.
Определение сечения элементов
Когда для фермы известны все действующие нагрузки, пора определяться с сечением элементов. Оно не обязательно должно быть равным для всех деталей: пояс традиционно выполняют из проката более крупного сечения, чем детали заполнения. Так обеспечивается запас надёжности конструкции.
где: Fтр — площадь поперечного сечения растянутой детали; N — усилие от расчётных нагрузок; Ry — расчётное сопротивление материала; γс — коэффициент условий работы.
Если с разрывающими нагрузками для стальных деталей всё относительно просто, то расчёт сжатых стержней производится не на прочность, а на устойчивость, так как итоговый результат количественно меньше и, соответственно, считается критическим значением. Рассчитать можно на онлайн-калькуляторе, а можно и вручную, предварительно определив коэффициент приведения длины, определяющий, на какой части общей протяжённости стержень способен изгибаться. Этот коэффициент зависит от метода крепления краёв стержня: для торцевой сварки это единица, а при наличии «идеально» жёстких косынок может приближаться к 0,5.
где: Fтр — площадь поперечного сечения сжатой детали; N — усилие от расчётных нагрузок; φ — коэффициент продольного изгиба сжатых элементов (определяется по таблице); Ry — расчётное сопротивление материала; γс — коэффициент условий работы.
Также нужно знать минимальный радиус инерции, определяемый как квадратный корень из частного от деления осевого момента инерции на площадь сечения. Осевой момент определяется формой и симметрией сечения, лучше взять это значение из таблицы.
где: ix — радиус инерции сечения; Jx — осевой момент инерции; Fтр — площадь сечения.
Таким образом, если разделить длину (с учётом коэффициента приведения) на минимальный радиус инерции, можно получить количественное значение гибкости. Для устойчивого стержня соблюдается условие, что частное от деления нагрузки на площадь поперечного сечения не должно быть меньше произведения допустимой сжимающей нагрузки на коэффициент продольного изгиба, который определяется значением гибкости конкретного стержня и материалом его изготовления.
где: lx — расчётная длина в плоскости фермы; ix — минимальный радиус инерции сечения по оси x; ly — расчётная длина из плоскости фермы; iy — минимальный радиус инерции сечения по оси y.
Обратите внимание, что именно в расчёте сжатого стержня на устойчивость отображена вся суть работы фермы. При недостаточном сечении элемента, не позволяющем обеспечить его устойчивость, мы вправе добавить более тонкие связи, изменив систему крепления. Это усложняет конфигурацию фермы, но позволяет добиться большей устойчивости при меньшем весе.
Изготовление деталей для фермы
Точность сборки фермы крайне важна, ведь все расчёты мы проводили методом векторных диаграмм, а вектор, как известно, может быть только абсолютно прямым. Поэтому малейшие напряжения, возникающие вследствие искривлений из-за неправильной подгонки элементов, сделают ферму крайне неустойчивой.
Сначала нужно определиться с размерами деталей внешнего пояса. Если с нижней балкой всё достаточно просто, то для нахождения длины верхней можно воспользоваться либо теоремой Пифагора, либо тригонометрическим соотношением сторон и углов. Последнее предпочтительно при работе с такими материалами, как угловая сталь и профильная труба. Если угол ската фермы известен, его можно вносить как поправку при подрезке краёв деталей. Прямые углы пояса соединяются подрезкой под 45°, наклонные — путём добавления к 45° угла наклона с одной стороны стыка и вычитанием его же с другой.
Детали заполнения вырезают по аналогии с элементами пояса. Основная загвоздка в том, что ферма — изделие строго унифицированное, а потому для её изготовления потребуется точная деталировка. Как и при расчёте воздействий, каждый элемент нужно рассматривать индивидуально, определяя углы схождения и, соответственно, углы подреза краёв.
Довольно часто фермы изготавливают радиусными. Такие конструкции имеют более сложную методику расчёта, но большую конструкционную прочность, обусловленную более равномерным восприятием нагрузок. Изготавливать скругленными элементы заполнения смысла нет, а вот для деталей пояса это вполне применимо. Обычно арочные фермы состоят из нескольких сегментов, которые соединяются в местах схождения заполняющих раскосов, что нужно учитывать при проектировании.
Сборка на метизах или сваривание?
В заключение было бы неплохо обозначить практическую разницу между способами сборки фермы свариванием и с помощью разъёмных соединений. Начать следует с того, что сверление в теле элемента отверстий под болты или заклёпки практически не влияет на его гибкость, а потому на практике не учитывается.
Когда речь зашла о способе скрепления элементов фермы, мы установили, что при наличии косынок длина участка стержня, способного изгибаться, существенно сокращается, за счёт чего можно уменьшить его сечение. В этом преимущество сборки фермы на косынках, которые крепятся сбоку к элементам фермы. В таком случае особой разницы в методе сборки нет: длины сварочных швов будет с гарантией достаточно, чтобы выдержать сосредоточенные напряжения в узлах.
Если же сборка фермы производится стыкованием элементов без косынок, здесь нужны особые навыки. Прочность всей фермы определяется наименее прочным её узлом, а потому брак в сваривании хотя бы одного из элементов может привести к разрушению всей конструкции. При недостаточном навыке ведения сварочных работ рекомендуется провести сборку на болтах или заклёпках с использованием хомутов, угловых кронштейнов или накладных пластин. При этом крепление каждого элемента к узлу должно осуществляться не менее чем в двух точках.
Понравилась статья? Подпишитесь на канал, чтобы быть в курсе самых интересных материалов
Источник статьи: http://rmnt.mirtesen.ru/blog/43428744039/Raschyot-i-izgotovlenie-metallicheskoy-fermyi-dlya-navesa