Фенолфталеин_окрашивается_малиновый_цвет_водном_растворе

Бесцветный малиновый

Окраска раствора, в котором индикатор находится в молекулярной форме (HInd), отличается от окраски раствора, в котором индикатор находится в ионной форме (Ind — ). Так, моле-кулы фенолфталеина HInd бесцветны, а его анионы Ind — окра­шены в малиновый цвет. Достаточно к раствору, содержащему фенолфталеин, прибавить 1-2 кап­ли щелочи, как введенные ОН — -ионы станут связывать катионы Н + с образо­ванием слабого электролита — молекул воды. При этом равновесие диссоци­ации индикатора сместится вправо, и накопление анионов Ind­ — вызовет окра­шивание раствора в малиновый цвет.

Переход одной окраски, присущей молекулярной форме кислотно-основного индикатора, в другую, свойственную его ионной форме, происходит под влиянием Н + или ОН — -ионов, то есть зависит от рН раствора.

Хромофорная теория индикаторов. Поведение индикаторов, объясняемое ионной теорией индикаторов, дополняется хромо-форной теорией индикато­ров, согласно которой изменение окраски индикаторов связано с изменением структуры их молекул, внутримолекулярной перегруппировкой, вызываемой действием Н + или ОН — -ионов. По хромофорной теории в процессе изменения рН раствора меняется стро­ение молекул кислотно-основных индикаторов. Это явление обусловливается бензоидно-хиноидной таутомерией. При изменении рН среды раствора или при диссоциации хромофоры могут перегруппировываться. Перемена окраски у индикаторов является результатом изменений в их внутреннем строении. У одноцветных индика­торов окраска изменяется в связи с появлением или исчезновением хромофо­ров. У двухцветных индикаторов эти изменения обусловлены превращением одних хромофоров в другие.

Дальнейшее увеличение рН до 13-14 вызывает другую пере-группировку, в результате чего получается трехзамещенная соль, лишённая хиноидной груп­пировки и поэтому бесцветная:

Вследствие этого фенолфталеин обесцвечивается при действии большого избытка щелочи, например, натрия гидроксида. Типичным двухцветным индикатором является метиловый оранжевый:

При рН = 3,2. 4,3 он оранжевый, при рН ≤ 3,1 приобретает красную, а при рН ≥ 4,4 — желтую окраску. Это объясняют присоединением ионов водорода кислоты к атому азота азогруппы индикатора, вследствие чего про­исходит смещение электронов по всей системе, сопровождающееся обра­зованием хиноидной структуры, которая обусловливает появление красной окраски раствора. Таким образом, при действии кислот наблюдают переход желтой окраски индикатора в красную, а при действии щелочей — обратное превращение:

Цветность органических соединений, согласно хромофорной теории, обу­словливается не только хиноидной структурой молекул, но и присутствием в них других хромофорных группировок (-N=N-, -N0­­2­, -NO, =С=С=, =С=О). При введении в молекулы органических веществ, содержащих хро­мофорные группы, ряда других групп — ауксохромов (-ОН, -Nh4, -NHR, -NHR) происходит углубление цвета окрашенного вещества.

Ионно-хромофорная теория индикаторов. Согласно дополняющим друг друга ионной и хромофорной теориям, в раст-ворах кислотно-основных индикато­ров одновременно сосущест-вуют равновесия, обусловливаемые диссоциацией молекул, и равновесия, связанные с внутримолекулярными перегруппировка­ми (ионно-хромофорная теория). Для кислотно-основных индика-торов наи­более характерными факторами, вызывающими измене-ние окраски, являют­ся изменение соотношения количеств молеку-лярной и ионной форм индика­тора, происходящее под влиянием кислот и щелочей, и появление или исчезновение хромофорных групп или же превращение одних хромофорных групп в другие.

Читайте также:  Торт_чернично_лавандовая_опера

Способность молекул различных индикаторов диссоциировать в нейтраль­ной среде характеризуют константами диссоциации. Например, у метилового оранжевого Кa≈ 10 -4, у лакмуса Кa ≈ 10 -8, а у фенолфталеина Кa ≈ 10-9. Следо­вательно, фенолфталеин является наиболее слабой органической кислотой из этих индикаторов.

Известно, что прибавление к любому раствору любой кислоты или щело­чи влечет за собой изменение концентрации ионов Н+ в нем, а следовательно, и величины рН. Перемена окраски у индика-торов также связана с измене­нием рН раствора. Однако каждый индикатор изменяет окраску только в определенном, ха­рактерном для него интервале значений рН. Объясняется это тем, что окраска индикатора зависит от соотношения концентраций его диссоци-ированной и недиссоциированной форм, то есть от отношения:

[Ind-] / [HInd] = KHInd / [H+] или [HInd] / [Ind-] = [H+] / KHInd.

Когда KHInd = [Н+], то [Ind-] / [HInd] = 1.

Если КHInd / [Н+] > 1, то в растворе превалирует диссоцииро-ванная форма индикатора, а если КHInd / [Н+] < 1, то превалирует недиссоциированная форма.

При одной и той же концентрации ионов водорода отношение КHInd / [Н+] будет тем больше, чем больше КHInd.

Для фенолфталеина КHInd = [Н+] [Ind-] / [HInd] ≈ 10-9.

При рН = 7 [Н+] = 10 -7, а [HInd] / [Ind-] = 10-7 / 10-9, то есть при рН = 7 на каж­дые 100 бесцветных молекул фенолфталеина приходится лишь 1 окрашенный ион, следовательно, раствор — бесцветный. Если к раствору фенолфталеина прибавить щелочь и довести рН раствора до 8, то соотношение [HInd] / [Ind -] = 10 -8 /10-9 (уменьшится в 10 раз), и раствор станет бледно­ розовым. А при рН=9 соотношение [HInd] / [Ind-] = 10-9 / 10-9 = 1, то есть в растворе присутствуют равные количества бесцветных молекул индикатора и окрашенных в красный цвет ионов и раствор приобретает розовую окраску.

Таким образом, переход­ная окраска индикатора появляется при рН среды, равном рКHInd, но так как изменение цвета индикатора происходит постепенно, цвет недиссоциирован­ных молекул индикатора начинает маскироваться цветом ионов задолго до достижения соотношения [HInd] / [Ind-] = 1.

Следовательно, цвет водного раствора индикатора определяется соотноше­нием концентрации его молекулярной и ионной форм, отличающихся различной окраской, и зависит от [Н+]. Величину рН, до которой титруют раствор с дан­ным индикатором, называют показателем титрования этого индикатора рТ.

Важнейшие индикаторы имеют следующие области перехода и показатели титрования:

Показатель титрования рТ Область перехода рН

Метиловый оранжевый…4,0…………… 3,1 — 4,4

Метиловый красный….. 5,5…………… 4,4 — 6,2

КРИВЫЕ ТИТРОВАНИЯ. ВЫБОР ИНДИКАТОРА

Кривая кислотно-основного титрования — это графическое изображение изменения рН раствора в ходе титрования.

Титрование сильной кислоты сильным основанием.

Допустим, что для титрования взяли 20 см3 раствора 0,1 моль/дм3 HCl, а в качестве титранта использовали раствор 0,1 моль/дм3 NaOH. Поскольку каждая молекула НСl дает при диссоциации один ион Н+, об­щая концентрация водородных ионов в 1 дм3 исходной 0,1 моль/дм3 кислоты составляет 0,1 (или 10 -1) моль-ион. Следовательно, рН этого раствора равен 1.

Читайте также:  Мое_кофе_рецепт_малинового

Когда 90 % соляной кислоты будет оттитровано, ионов Н+ останется 10 % от первоначального количества, то есть 0,01 (или 10-2) моль-ион в 1 дм3, а рН раствора станет равен 2. При нейтрализации 99,0 % соляной кислоты рН = 3; при нейтрализации 99,9 % кислоты рН = 4 и т. д. В момент полной нейтрали­зации соляной кислоты титруемый раствор содержит только натрия хлорид и имеет рН = 7. Прибавление избытка натрия гидроксида ведет к увеличению рН раствора, как это показано в табл. 3.1.

Результаты этих вычислений изображают графически. На оси абс-цисс откладывают избыток кислоты или щелочи в разные моменты титрования, а на оси ординат — соответствующие значения рН раствора. Получающийся гра­фик называют кривой титрования.

Ход этой кривой свидетельствует, что в конце титрования сильной кислоты сильным основанием происходит резкий скачок в измене-нии рН раствора. К моменту нейтрализации 99,9 % кислоты рН по­степенно растет от 1 до 4, то есть всего на три единицы, а при переходе от 0,1 % остатка НСl к 0,1 % избытку NaOH рН раствора резко увеличивается с 4 до 10. Это означает, что добавление одной капли щелочи в конце титрова­ния понижает концентрацию ионов Н+ с 10 -4 до 10 -10 моль в литре или в миллион раз.

Изменение рН раствора при титровании сильной кислоты сильным основанием

В результате резкого из­менения рН раствора от по­следней капли раствора основания происходит и рез­кое изменение окраски ин­дикатора. При отсутствии скачка рН на кривой титро­вания окраска индикатора изменялась бы постепенно и определить точку эквива­лентности было бы невоз­можно.

Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:

Источник

В каких пределах работает индикатор фенолфталеин

Фенолфталеин — индикатор, показывающий уровень кислотности среды. Это соединение химически правильно называется 4,4′-диоксифталофеноном; 3,3-бис-(4-гидроксифенил)фталидом или 3,3-бис(4-гидроксифенил)-1(3Н)-изобензофураноном. В быту его еще называют пурген. Формула C20H14O4. В нормальных условиях химикат представляет собой белое кристаллическое вещество с бесцветными кристалликами и с характерным запахом. В воде растворим плохо, но хорошо в этаноле и диэтиловом эфире.

Получение

Индикатор фенолфталеин получают органическим синтезом из фенола C6H5OH и фталевого ангидрида C8H4O3 в присутствии хлорида цинка ZnCl2 или концентрированной H2SO4. В раствор кислоты добавляют одну часть фенола и три части ангидрида. Все смешивают и нагревают до +105 °С … +110 °С. В ходе реакции выпадает осадок — кристаллический фенолфталеин. После удаления жидкости и высушивания кристаллов реактив готов к использованию.

Впервые вещество было получено Нобелевским лауреатом, немецким химиком Адольфом фон Байером в конце 19 века.

Применение фенолфталеина

Индикатор фенолфталеин — это так называемый кислотно-основный индикатор, один из самых употребляемых. Причем им пользуются не только химики: он удобен и для быстрого определения кислотности крема, шампуня, садово-огородной почвы, какого-либо продукта и т.п.

Еще на так давно пурген был популярным слабительным средством, но в настоящее время он признан вредным канцерогеном, запрещен для приема внутрь и продажи в аптечных сетях.

Читайте также:  Какие_ягоды_можно_вялить

Основное применение реактива — аналитическая химия. Он востребован:
• в качестве индикатора;
• для изготовления индикаторной бумаги;
• в процессах титрования;
• для идентификации в растворах некоторых элементов, например, цинка, кадмия, магния и пр.;
• для приготовления комплексных индикаторных составов.

4 состояния окраски в зависимости от кислотности среды

Если добавить в исследуемый раствор фенолфталеин, цвет индикатора изменится в зависимости от кислотности среды:
• в сильнокислой среде с уровнем рН менее 0 цвет станет оранжевым;
• нейтральная и слабокислая среда (рН в пределах от 0 до 8,2) цвет не изменит;
• щелочная среда с рН от 8 до 10 окрасится в ярко-малиновый (розовый, пурпурный, фуксиновый) цвет;
• очень сильно щелочная среда с рН выше 12 тоже не изменит свой первоначальный цвет.

Рабочее значение перехода окраски

Для процесса титрования важно знать значение показателя титрования рН, который совпадает с конечной точкой титрования. Определяют эту точку по середине области перехода окраски кислотно-основного индикатора.

Цвет индикатора фенолфталеина показывает уровень кислотности среды. Наиболее информативен индикатор в щелочных средах, т.к. в умеренно кислых и сильно щелочных он бесцветен. Интервал перехода окраски диоксифталофенона лежит в диапазоне значений уровня рН от 8,2 до 10,0. Это значит, что значение его показателя титрования равно 9,0.

Правила работы с реактивом и меры предосторожности

Для титрования и аналитических работ используется спиртовой раствор фенолфталеина. Удобнее всего, если раствор хранится в капельнице. Для определения кислотности среды в исследуемую жидкость капают одну каплю индикатора фенолфталеина и спустя примерно 3 секунды наблюдают за изменениями или неизменениями окраски.

Диоксифталофенон — это химическое вещество 2 категории опасности. Его брызги опасны для незащищенной кожи и глаз, вызывают химические ожоги. Поэтому при работе с реактивом следует надевать перчатки, защитные очки и маски.

Утилизируют раствор по правилам для опасных веществ. Просроченный или использованный реактив запрещено сливать в канализацию или в землю, выбрасывать на городских свалках.

Хранят раствор в стеклянных флаконах, бутылях, капельницах не более месяца. Потом нужно готовить свежий реактив. Сухой фенолфталеин допускается хранить до года на сухом складе. И сухой, и в виде раствора реактив хранят в помещениях с контролем температуры. Вещество нельзя подвергать воздействию минусовых температур, нагреву, воздействию солнечного света.

Как можно приобрести реактив у ПраймКемикалсГрупп

В магазине «ПраймКемикалсГрупп» представлен широкий ассортимент различных химических индикаторов, и конечно же, есть фенолфталеин и индикаторная фенолфталеиновая бесцветная бумага. Продукты доступны для самовывоза со склада в Мытищах, или мы готовы доставить их в любой населенный пункт страны.

Заказать индикатор не выходя из дома можно через сайт pcgroup.ru. На любой странице сайта указаны телефоны (вверху), есть кнопка обратного звонка. Адрес электронной почты и адрес склада указаны внизу. На странице конкретного товара есть кнопка «Купить». Еще сделать заказ можно через мессенджеры WhatsApp и Telegram (тел. +7(929) 635 82 73).

Источник

Оцените статью