Дистанционные методы зондирования ландшафтов

Методы дистанционного зондирования Земли

Методы дистанционного зондирования основаны на том, что любой объект излучает и отражает электромагнитную энергию в соответствии с особенностями его природы. Различия в длинах волн и интенсивности излучения могут быть использованы для изучения свойств удаленного объекта без непосредственного контакта с ним.

Дистанционное зондирование сегодня — это огромное разнообразие методов получения изображений практически во всех диапазонах длин волн электромагнитного спектра (от ультрафиолетовой до дальней инфракрасной) и радиодиапазона, самая различная обзорность изображений — от снимков с метеорологических геостационарных спутников, охватывающих практически целое полушарие, до детальных аэросъемок участка в несколько сот квадратных метров.

Фотографические снимки поверхности Земли получают с пилотируемых кораблей и орбитальных станций или с автоматических спутников. Отличительной чертой КС является высокая степень обзорности, охват одним снимком больших площадей поверхности. В зависимости от типа применяемой аппаратуры и фотопленок, фотографирование может производиться во всем видимом диапазоне электромагнитного спектра, в отдельных его зонах, а также в ближнем ИК (инфракрасном) диапазоне.

Масштабы съемки зависят от двух важнейших параметров: высоты съемки и фокусного расстояния объектива. Космические фотоаппараты в зависимости от наклона оптической оси позволяют получать плановые и перспективные снимки земной поверхности.

В настоящее время используется фотоаппаратура с высоким разрешением, позволяющая получать КС с перекрытием 60% и более. Спектральный диапазон фотографирования охватывает видимую часть ближней инфракрасной зоны (до 0,86 мкм).

Известные недостатки фотографического метода связаны с необходимостью возвращения пленки на Землю и ограниченным ее запасом на борту. Однако фотографическая съемка — в настоящее время самый информативный вид съемки из космического пространства. Оптимальный размер отпечатка 18х18 см, который, как показывает опыт, согласуется с физиологией человеческого зрения, позволяя видеть все изображение одновременно.

Для удобства пользования из отдельных КС, имеющих перекрытия, монтируются фотосхемы (фотомозаики) или фотокарты с топографической привязкой опорных точек с точностью 0,1 мм и точнее. Для монтажа фотосхем используются только плановые КС.

Для приведения разномасштабного, обычно перспективного КС к плановому используется специальный процесс, называемый трансформированием. Трансформированные КС с успехом используются для составления космофотосхем и космофотокарт и обычно легко привязываются к географической сетке координат.

В настоящее время для съемок из космоса наиболее часто используются многоспектральные оптико-механические системы — сканеры, установленные на ИСЗ различного назначения. При помощи сканеров формируются изображения, состоящие из множества отдельных, последовательно получаемых элементов. Термин «сканирование» обозначает развертку изображения при помощи сканирующего элемента (качающегося или вращающегося зеркала), поэлементно просматривающего местность поперек движения носителя и посылающего лучистый поток в объектив и далее на точечный датчик, преобразующий световой сигнал в электрический. Этот электрический сигнал поступает на приемные станции по каналам связи. Изображение местности получают непрерывно на ленте, составленной из полос — сканов, сложенных отдельными элементами — пикселами. Сканерные изображения можно получить во всех спектральных диапазонах, но особенно эффективным является видимый и ИК-диапазоны. При съемке земной поверхности с помощью сканирующих систем формируется изображение, каждому элементу которого соответствует яркость излучения участка, находящегося в пределах мгновенного поля зрения. Сканерное изображение — упорядоченный пакет яркостных данных, переданных по радиоканалам на Землю, которые фиксируются на магнитную ленту (в цифровом виде) и затем могут быть преобразованы в кадровую форму.

Различные методы сканирования поверхности Земли

Важнейшей характеристикой сканера являются угол сканирования (обзора) и мгновенный угол зрения, от величины которого зависят ширина снимаемой полосы и разрешение. В зависимости от величины этих углов сканеры делят на точные и обзорные. У точных сканеров угол сканирования уменьшают до ±5°, а у обзорных увеличивают до ±50°. Величина разрешения при этом обратно пропорциональна ширине снимаемой полосы.

Хорошо зарекомендовал себя сканер нового поколения, названный «тематическим картографом», которым были оснащены американские ИСЗ Landsat 5 и Landsat 7. Сканер типа «тематический картограф» работает в семи диапазонах с разрешением 30 м в видимом диапазоне спектра и 120 м в ИК-диапазоне. Этот сканер дает большой поток информации, обработка которой требует большего времени; в связи с чем замедляется скорость передачи изображения (число пикселов на снимках достигает более 36 млн. на каждом из каналов). Сканирующие устройства могут быть использованы не только для получения изображений Земли, но и для измерения радиации — сканирующие радиометры, и излучения — сканирующие спектрометры.

Радиолокационная (РЛ) или радарная съемка — важнейший вид дистанционных исследований. Используется в условиях, когда непосредственное наблюдение поверхности планет затруднено различными природными условиями: плотной облачностью, туманом и т.п. Она может проводиться в темное время суток, поскольку является активной.

Особенности оптической и радарной съёмки

Для радарной съемки обычно используются радиолокаторы бокового обзора (ЛБО), установленные на самолетах и ИСЗ. С помощью ЛБО радиолокационная съемка осуществляется в радиодиапазоне электромагнитного спектра. Сущность съемки заключается в посылке радиосигнала, отражающегося по нормали от изучаемого объекта и фиксируемого на приемнике, установленном на борту носителя. Радиосигнал вырабатывается специальным генератором. Время возвращения его в приемник зависит от расстояния до изучаемого объекта. Этот принцип работы радиолокатора, фиксирующего различное время прохождения зондирующего импульса до объекта и обратно, используется для получения РЛ-снимков. Изображение формируется бегущим по строке световым пятном. Чем дальше объект, тем больше времени надо на прохождение отражаемого сигнала до его фиксации электронно-лучевой трубкой, совмещенной со специальной кинокамерой.

При дешифрировании радарных снимков следует учитывать тон изображения и его текстуру. Тоновые неоднородности РЛ-снимка зависят от литологических особенностей пород, размера их зернистости, устойчивости процессам выветривания. Тоновые неоднородности могут варьировать от черного до светлого цвета. Опыт работы с РЛ-снимками показал, что черный тон соответствует гладким поверхностям, где, как правило, происходит почти полное отражение посланного радиосигнала. Крупные реки всегда имеют черный тон. Текстурные неоднородности РЛ-изображения зависят от степени расчлененности рельефа и могут быть тонкосетчатыми, полосчатыми, массивными и др. Полосчатая текстура РЛ-изображения, например, характерна для горных районов, сложенных часто чередующимися слоями осадочных или метаморфических пород, массивная — для районов развития интрузивных образований. Особенно хорошо получается на РЛ-снимках гидросеть. Она дешифрируется лучше, чем на фотоснимках. Высокое разрешение РЛ-съемки в районах, покрытых густой растительностью, открывает широкие перспективы ее использования.

Радарные системы бокового обзора с конца 70-х годов стали устанавливать на ИСЗ. Так, например, первый радиолокатор был установлен на американском спутнике «Сисат», предназначенном для изучения динамики океанических процессов. Позднее был сконструирован радар, испытанный во время полетов космического корабля «Шаттл». Информация, полученная с помощью этого радара, представляется в виде черно-белых и ложноцветных синтезированных фото-, телеизображений или записей на магнитную ленту. Разрешающая способность 40 м. Информация поддается числовой и аналоговой обработке, такой же, что и сканерные снимки системы Landsat. Это в значительной мере способствует получению высоких результатов дешифрирования. Во многих случаях РЛ-снимки оказываются геологически более информативными, чем снимки спутников Landsat или других оптических сенсоров. Наилучший результат достигается и при комплексном дешифрировании материалов того и другого видов. РЛ-снимки успешно используются для изучения трудно- или недоступных территорий Земли — пустынь и областей, расположенных в высоких широтах, а также поверхность других планет.

Классичесими уже стали результаты картирования поверхности Венеры — планеты, покрытой мощным облачным слоем. Совершенствование РЛ-аппаратуры должно повлечь за собой дальнейшее повышение роли радиолокации в дистанционных исследованиях Земли, особенно при изучении ее геологического строения.

Инфракрасная (ИК), или тепловая, съемка основана на выявлении тепловых аномалий путем фиксации теплового излучения объектов Земли, обусловленного эндогенным теплом или солнечным излучением. Она широко применяется в геологии. Температурные неоднородности поверхности Земли возникают в результате неодинакового нагрева различных ее участков. Инфракрасный диапазон спектра электромагнитных колебаний условно делится на три части (в мкм):

Солнечное (внешнее) и эндогенное (внутреннее) тепло нагревает геологические объекты по-разному в зависимости от литологических свойств пород, тепловой инерции, влажности, альбедо и многих других причин.

ИК-излучение, проходя через атмосферу, избирательно поглощается, в связи с чем тепловую съемку можно вести только в зоне расположения так называемых «окон прозрачности» — местах пропускания ИК-лучей. Опытным путем выделено четыре основных окна прозрачности (в мкм): 0,74—2,40; 3,40—4,20; 8,0—13,0; 30,0—80,0. Некоторые исследователи выделяют большее число окон прозрачности. в первом окне (до 0,84 мкм) используется отраженное солнечное излучение. Здесь можно применять специальные фотопленки и работать с красным фильтром. Съемка в этом диапазоне называется ИК-фотосъемкой.

В других окнах прозрачности работают измерительные приборы — тепловизоры, преобразующие невидимое ИК-излучение в видимое с помощью электроннолучевых трубок, фиксируя тепловые аномалии. На ИК-изображениях светлыми тонами фиксируются участки с низкими температурами, темными — с относительно более высокими. Яркость тона прямо пропорциональна интенсивности тепловой аномалии. ИК-съемку можно проводить в ночное время. На ИК-снимках, полученных с ИСЗ, четко вырисовывается береговая линия, гидрографическая сеть, ледовая обстановка, тепловые неоднородности водной среды, вулканическая деятельность и т.п. ИК-снимки используются для составления тепловых карт Земли. Линейно-полосовые тепловые аномалии, выявляемые при ИК-съемке, интерпретируются как зоны разломов, а площадные и концентрические — как тектонические или орографические структуры. Например, наложенные впадины Средней Азии, выполненные рыхлыми кайнозойскими отложениями, на ИК-снимках дешифрируются как площадные аномалии повышенной интенсивности. Особенно ценна информация, полученная в районах активной вулканической деятельности.

В настоящее время накоплен опыт использования ИК-съемки для изучения дна шельфа. Этим методом по разнице температурных аномалий поверхности воды получены данные о строении рельефа дна. При этом использован принцип, согласно которому при одинаковом облучении поверхности воды на более глубоких участках водных масс энергии на нагревание расходуется больше, чем на более мелких. В результате температура поверхности воды над более глубокими участками будет ниже, чем над мелкими. Этот принцип позволяет на ИК-изображениях выделять положительные и отрицательные формы рельефа, подводные долины, банки, гряды и т.п. ИК-съемка в настоящее время применяется для решения специальных задач, особенно при экологических исследованиях, поисках подземных вод и в инженерной геологии.

Дата добавления: 2015-01-05 ; просмотров: 185 ; Нарушение авторских прав

Источник статьи: http://lektsii.com/1-58988.html

Анализ данных дистанционного зондирования (ДДЗ), применяемых для ландшафтно-экологического картографирования

Рубрика: Технические науки

Статья просмотрена: 1824 раза

Библиографическое описание:

Беленко, В. В. Анализ данных дистанционного зондирования (ДДЗ), применяемых для ландшафтно-экологического картографирования / В. В. Беленко. — Текст : непосредственный // Молодой ученый. — 2009. — № 10 (10). — С. 34-36. — URL: https://moluch.ru/archive/10/741/ (дата обращения: 04.03.2021).

В статье проанализированы современные аэрокосмические системы получения данных дистанционного зондирования, наиболее полно отвечающие требованиям крупномасштабного ладшафтно-экологического картографирования.

In article modern space systems of data acquisition of the remote sounding, most full meeting the requirements of large-scale landscape-ecological mapping are analyzed.

На сегодняшний день материалы разных видов аэрокосмических съемок применяются в различных географических, народнохозяйственных, ландшафтных и экологических направлениях исследования Земли. Материалы дистанционного зондирования получают в результате неконтактной съемки с летательных воздушных (самолетов, дирижаблей) и космических аппаратов. Полученные данные разнообразны по масштабу, геометрическому разрешению и различным спектральным набором (т.е. снимки, полученные в разных, а порой и достаточно в узких зонах электромагнитного спектра). Главными достоинствами аэрокосмических изображений считаются их высокая детальность, одномоментный охват обширных территорий, возможность регулярно проводить съемки на одну и ту же территорию. Съемки производят в видимой, ближней инфракрасной, тепловой инфракрасной, радиоволновой и ультрафиолетовой зонах электромагнитного спектра.

Поскольку на аэрокосмических снимках одновременно изображаются все компоненты природной среды и отражаются их взаимосвязи, они наиболее ценны для ландшафтного и экологического картографирования. Двумерная, а иногда и трехмерная модель поверхности земли (стереоскопические снимки), отображаемая на аэрокосмических снимках, обладает очень важными свойствами: 1) адекватность по геосистемной размерности объектов мелкомасштабных исследований – ландшафтам и вышестоящим единицам физико-географического районирования; 2) целостность и структурная дифференцированность; 3) отражение благодаря оптической генерализации главных свойств ландшафтной структуры; 4) не только пространственная, но и пространственно-временная информативность; 5) многоярусность; 6) иерархичность; 7) широкий охват диапазона геосистемных уровней.

Основными компонентами ландшафта являются почвы, растительность, климат, рельеф, вода, животный мир и др. Но для исследования дистанционными методами подходят лишь почвы, растительность, рельеф и вода. Ниже рассмотрим более подробно.

В настоящее время на территорию России систематически производятся космические съемки. Широкий ассортимент космических снимков и материалов их первичной обработки – по видам, масштабам, спектральным диапазонам — позволяет осу­ществлять целенаправленный ее отбор при картографировании от­дельных аспектов состояний и условий природной среды. Сущест­вующая космическая информация дает возможность использовать как для составления картографических основ, так и для создания тематических экологических карт различного содержания.

Для полного и всестороннего анализа экологических условий целесо­6разно использовать комплекс материалов космической съемки и аэросъемки: разномасштабные, разновременные, разноспектральные сним­ки

Современная космическая информация отвечает многим требованиям ландшафтно-экологического изучения и картографирования территории. Она обеспечивает изучение больших площадей, состояние которых зафиксировано практически на единый момент времени; выявление экологических условий в их взаимосвязи и взаимовлиянии друг на друга, что позволяет рассматривать среду обитания человека, растений и животных как единую систему. Достаточно полно требованиям экологического картографирования удовлетворяют многозональные съемки в видимом диапазоне, имеющие различные узкие спектральные диапазоны (табл.1).

Таблица 1. Применения космической съемки при составлении экологических карт

Спектральный диапазон, нм

Основной интерпретируемый объект при составлении экологических карт

Черно-белая в широком диапазоне

Растительность, почвы, грунты, геоморфологические объекты, подземные и поверхностные воды, ландшафты.

Подводная растительность, почвы, грунты.

Геоморфологические объекты, почвы, горные породы, дороги, населенные пункты.

Гидрография, увлажненность, растительность, почвы

Растительность, почвы, ландшафты

Растительность, почвы, ландшафты

Следует сказать, что в последние 2-3 года начинают использовать материалы космических съемок в сантиметровом и дециметровом диапазонах, обладающих высоким пространственным и энергетическим разрешением. Для этого подходят радарные космические спутники TERRASARX, ALOS(PALSAR).

В зависимости от задач исследования могут использоваться снимки, выполненные в более узких зонах спектра, например 460-500, 520-560, 580-620, 640-680 нм и др., или четырех зонах электромагнитного спектра: синей — 400-500, зеленой — 500-600, красной — 600-700, ближней инфракрасной 700-900 нм.

Наиболее информативными при экологическом картографировании, являются черно-белые снимки, выполненные в зонах 460-740 или 600-700 нм, и цветные синтезированные изображения, которые могут быть получены от 2-х до 4-х зон электромагнитного спектра. Для этого подойдут данные со спутников QuickBird, Formosat-2, ALOS (Prism, Avnir-2), Ikonos, OrbView-3.

Для целей комплексного картографирования экологических условий природной среды и ее динамики обычно используются исходные космические снимки, а также разномасштабно увеличенные (черно-белые, полученные либо в широком диапазоне электромагнитного спектра, либо в одной из узких зон видимого спектра; цветные, обладающие цветопередачей, близкой к естественной; цветные спектрозональные и синтезированные изображения, выполненные в условных цветах) [1, c.44].

Для дешифрирования некоторых экологических характеристик и специфических экологических условий лучше использовать зональные синтезированные изображения многозональныx аэрокосмических съемок.

Набор снимков исследуемого участка местности, полученных одновременно в разных зонах электромагнитного спектра, дает комплексную характеристику местности и позволяет получить достоверную и детальную информацию о природной среде не только о ее физиономичных объектах, но и некоторых скрытых компонентах ланд­шафта. При картографировании следует учитывать, что каждый уровень генерализации, так же как и каждая спектральная зона, несет определенную информацию о природной среде и, следова­тельно, характеризуется различной информативностью.

При общей оценке информативности снимка в какой-либо одной зоне элект­ромагнитного спектра в целом нельзя отдать предпочтение этому снимку, но при решении конкретных задач, например при оценке степени разли­чия морфологических элементов ландшафта, уточнении гидрогра­фических объектов, определении характера, строения и состояния растительного покрова, выделении характерных типов, видов и раз­новидностей почв и т. п., прослеживается явное преимущество тех или иных спектральных зон. Причем информативность снимков, выполненных в разных зонах спектра, изменяется не только в зависимости от решаемой задачи, но также от района и сезона съемки. И только набор снимков одного и того же участка местности, полученных одновременно в разные сезоны и в различ­ных зонах спектра, может дать многостороннюю характеристику природной среды. Так как каждому типу ландшафта в пределах определенной географической зоны свойственны свои взаимосвязи закономерности, то и признаки дешифрирования природных объектов будут иметь местный характер. Следовательно, и требо­вания к космической информации локальны. Например, для ландшафтных исследований в лесной зоне предпочтительно использовать снимки, полученные летом в зоне 600-700 нм; для уточ­нения морфологического сложения некоторых ландшафтов — сним­ки выполненные в зоне спектра 500-600 нм, для уточнения гидрографических объектов — снимки в зоне спектра 700-800 нм. Для ландшафтных исследований в полупустыне наиболее инфор­мативными спектральными зонами являются 640-740, 580­-620, 520-620 нм [1, c.41].

При геоморфологических исследованиях могут использоваться снимки разных зон. Для картографирования рельефа в полупустыне наиболее информативны снимки в спек­тральной зоне 580-680 нм, полученные при съемке осенью, а в сухой степи — летом; в полупустыне летние снимки лучше в зоне спектра 520-560 нм. Литологические разности коренных и четвертичных отложений лучше отражаются в зоне спектра 520-560 нм; рыхлые четвертич­ные Отложения — в зоне 500-600 нм. Для этого наиболее пригодны данные со следующих космических спутников: WorldView-1, WorldView-2, GeoEye-1-оптко-электронные, Envisat, Radarsat-2 – радарные.

Для дешифрирования растительного покрова достоверные ре­зультаты получаются при использовании спектрозональных космических снимков, а также черно-белых, выполненных в зонах спектра 660-720 или 600-700 нм, обеспечивающих наибольшую четкость и наилучшее пространственное разрешение. Спектрозональные изображения повышают достоверность дифференциации различных типологических и территориальных категорий растительного покрова. Снимки, полученные в зонах 520-560, 640-680, 820-890 нм, являются наиболее информативными при определении поврежденных энтомовредителями лесов. При инфекционных болезнях леса наиболее информативен диапазон 640-680 нм. Хорошие результаты при типологическом дешифрировании расти­тельности дают синтезированные цветные изображения. Для этого используют следующие космические аппараты: RapidEye, ALOS (Prism, Avnir-2), Resourcesat-1 (IRS-P6), Landsat-7, Kompsat-2, Ресурс ДК, Cosmo-SkyMed 1, 2, 3, 4, IRS-1C/1D.

При исследовании гидрогеологических условий основное внима­ние уделяется изучению распределения их индикаторов. Так как грунтовые воды и их характеристики не имеют непосредствен­ного отражения на космических снимках, то получение информации о них основано на использовании различных физиономич­ных, чaстныx и комплексных индикаторов, имеющих отражение на дистанционных материалах, и комплексном анализе физико-географических и геологических условий, обусловливающих формирование и накопление подземных вод.

При гидрогеологическом картографировании космические снимки обеспечивают выделение контуров, различающихся по рисунку изображения, интерпретация которых возможна при применении ландшафтно-индикационных закономерностей. Для этого целесообразно использование тех зональных снимков, на которых эти индикаторы наиболее четко отображаются прак­тически при обнаружении грунтовых вод и определении их характеристик наиболее частными индикаторами выступают сочетания и растительности и рельефа, поэтому наиболее информативными и снимками при дешифрировании грунтовых вод следует считать те, которые являются информативными для определения этих фи­зиономичных компонентов ландшафта.

Наиболее информативными при изучении и картографировании почвенного покрова признаны снимки, полученные в зонах электромагнитного спектра 460-580 и 600-700 нм, и спектраль­ные снимки весеннего и осеннего сроков, в которых лучше всего отражается комплексность почвенно-растительного покрова. Для определения отдельных экологических свойств почв на наиболее информативными оказались: зона 700-740 нм — для дешифрирования влажности; 460-580 нм — для установления солончаков и засоленных почв; 520-560 нм — для определения механического состава почв. Для картографирования состояния почвенного покрова и его характеристик подходят данные со следующих космических спутников: Ресурс ДК, Ikonos, GeoEye-1, Spot-5, EO-1 (Hyperion, ALI) (данный спутник специально предназначен для почвенного картографирования),

Большое значение для выполнения экологических наблюдений над объектами природной среды могут дать материалы повторной съемки. Синтезированные цветные изображения, полученные в ре­зультате синтеза разновременных космических снимков одной и той же местности с сопоставимыми технологическими условиями съемки, позволяют получить наглядное представление о динамике экзогенных процессов природной среды.

Требования к сезонам cъeмки при решении ряда экологических задач, довольно разнообразны. Однако опыт показывает, что боль­шинство требований может быть удовлетворено при наличии двух вариантов съемки: 1) летняя съемка для обеспечения изучения экологических условий и их динамики в гумидных зонах и 2) трехсезонная съемка (весна-лето-осень) — для районов аридной и субаридной зон [1, c.49].

Таким образом, в статье мы рассмотрели современные данные дистанционного зондирования, которые наиболее полно отвечают требованиям ландшафтно-экологического картографирования. Для этого применяются различные по способу съемки съемочные аэрокосмические аппараты, от оптико-электронных до радарных, которые в последнее время все больше и больше применяются в ландшафтно-экологическом картографировании.

1. Востокова Е.А. Экологическое картографирование на основе космической информации. М.: Недра, 1988.-223 с.

Источник статьи: http://moluch.ru/archive/10/741/

Читайте также:  Как покрыть теплицу пластиковыми бутылками
Оцените статью
Читайте также:
  1. Cтруктуры внешней памяти, методы организации индексов
  2. II. Методы искусственной детоксикации организма
  3. II. Методы несанкционированного доступа.
  4. III. Методы манипуляции.
  5. IV. Традиционные методы среднего и краткосрочного финансирования.
  6. IX. Методы СТИС
  7. R Терапевтическая доза лазерного излучения и методы ее определения
  8. V. Способы и методы обеззараживания и/или обезвреживания медицинских отходов классов Б и В
  9. Административно-правовые методы государственного управления. Государственное регулирование.
  10. Административные и правовые методы управления. Принуждение как метод управления.