Блок управление микроклиматом теплицы

Система управления микроклиматом в теплице

В статье описана аппаратная реализация системы управления микроклиматом в теплице. Данная система является частью реального приусадебного хозяйства. С её помощью процесс выращивания растений стал частично автоматизированным, не требующим постоянного присутствия человека.

Конкретный экземпляр данной системы отрабатывается на каркасностеклянной теплице, длиной 6 метров, шириной 3 метра, высотой 2 метра. В теплице имеется одна дверь и 2 форточки, проведены электричество и водопровод. Нагрев воды происходит в емкости объемом 70 литров. Давление в емкости составляет порядка двух атмосфер. В теплице выращивается около 35 растений.

Система имеет следующий вид:

Рисунок 1. Схема системы управления микроклиматом в теплице

Центральное место в системе занимает плата Arduino Mega (на рис. 1 -1):

Рисунок 2. Arduino Mega

Arduino является полностью открытой платформой, состоящей из платы и среды разработки, в которой реализована переработанная версия языка Processing/Wiring.

Используемая аппаратная платформа построена на микроконтроллере ATmega1280.

В данной системе задействованы 8 цифровых входов/выходов (всего на платформе их 54) и 10 аналоговых (всего их 16). Плата получает питание от внешнего блока питания.

Плата имеет следующие характеристики:

  • рабочее напряжение: 5В;
  • рекомендуемое входное напряжение: 7-12 В;
  • предельное входное напряжение: 6-20 В;
  • 54 цифровых портов ввода/вывода;
  • 16 аналоговых входов;
  • ток потребления на одном выводе: до 40 мА;
  • ток потребления вывода 3.3В: 50 мА;
  • память Flash Memory: 128 KB, из которых 4KB используются загрузчиком;
  • ОЗУ: 8 KB;
  • энергонезависимая память: 4 KB;
  • тактовая частота: 16 МГц;
  • размер: 75x54x15 мм;
  • вес: 45 г;

К Arduino Mega подключены необходимые датчики и модули.

Включение/выключение полива зависит от ряда параметров:

  • влажность почвы;
  • температура воды;
  • время суток.

В данной системе задействовано 4 датчика влажности почвы (на рис. 1 — 2).

Для измерения влажности почвы используется самодельный датчик, представляющий собой два гвоздя и резистор. Принцип действия основан на зависимости электрического сопротивления почвы от ее влажности.

Гвозди, введенные в почву на некотором расстоянии друг от друга, выступают в качестве щупов, между которыми проверяется сопротивление. По итоговому аналоговому сигналу можно судить о степени влажности.

Схема датчика представлена на рисунке:

Рисунок 3. Датчик влажности почвы

Для измерения температуры воды используется LM335Z -аналоговый термодатчик (термостабилитрон, на рисунке 1 — 3):

Рисунок 4. Аналоговый термодатчик LM335Z

Используемый датчик имеет следующие характеристики:

  • диапазон: -40…+100;
  • точность: 1°С;
  • зависимость: 10мВ/оС.

Для подключения датчика к плате требуется резистор, сопротивлением 2.2 кОм. Задавая ток через датчик в диапазоне от 0.45 мА до 5 мА (резистором R1), получаем напряжение на датчике, которое в десятках мВ представляет абсолютную температуру в градусах Кельвина.

Схема подключения имеет следующий вид:

Рисунок 5. Схема подключения термодатчика

Для того, чтобы полив включался только в темное время суток, используются 2 датчика света Light Sensor-BH1750 (на рис. 1 — 4):

Рисунок 6. Датчик света Light Sensor-BH1750

Данный датчик служит для измерения освещённости в пределах от 1 до 65535 люкс.

Он имеет следующие характеристики:

• напряжение питания: 3-5В;

• разрешение: 16 бит;

Читайте также:  Таблица однолетников для клумб

• габариты: 19х14х3 мм;

Подключение датчика производится следующим образом:

Рисунок 7. Подключение датчика света Light Sensor-BH1750

Когда полученные с датчиков показания удовлетворяют определенным условиям (она различаются для каждого вида растений), включается полив. Для регулирования полива используется электромагнитный клапан. Он подключается к плате с помощью реле (на рис. 1 — 5). А именно используется релейный модуль для Arduino проектов Relay Module 2 DFR0017. Он использует высококачественное реле Omron G5LA. Состояние выхода реле отображается с помощью светодиода. Этот модуль управляется с помощью цифрового порта ввода-вывода. Время переключения контакта составляет 10 мс. Как и датчики для измерения температуры и влажности почвы, релейный модуль подключается в управляющей электронике через три провода:

Рисунок 8. Назначение контактов разъема релейного модуля

Рисунок 9. DHT11 Temperature Humidity Sensor

Помимо полива данная система контролирует и температуру воздуха в теплице.

Для одновременного измерения температуры и влажности воздуха используется датчик DHT11 Temperature Humidity Sensor (нарис. 1 — 6).

Он подключаются к управляющей электронике через три провода: питание (Vсс), земля GND) и сигнальный.

На плате кроме датчика расположен микроконтроллер, в памяти которого записаны калибровочные поправки для датчиков. Сигнал с устройства передается по шине в цифровом виде. Это позволяет передавать данные на расстояние до 20 м.

Данный датчик имеет следующие характеристики:

  • напряжение питания: 5 В;
  • диапазон температур: 0-50 ° С, погрешность ±2 ° С;
  • влажность: 20-90%, погрешность ±5%.

Для регулировки температуры воздуха в теплице используется два режима: пассивное и активное проветривания. Пассивное проветривание представляет собой открытие/закрытие форточек, а активное -включение/выключение вентилятора.

Открытие форточек производится с помощью двух (по одному на форточку) сервоприводов Futaba Т306 MG995 (на рисунке 1 — 7):

Рисунок 10. Сервопривод Futaba Т306 MG995

Используемые сервопривод имеет следующие характеристики:

  • скорость работы: 0.17 с / 60 градусов (4,8 В без нагрузки);
  • момент: 13 кг-см при 4,8 В;
  • момент: 15 кг-см при 6 В;
  • рабочее напряжение: 4,8 — 7.2 В;
  • длина провода: 300 мм;
  • размеры: 40мм х 19мм х 43 мм;
  • вес: 55 г.

Подключение вентилятора производится таким же способом, как и подключение клапана (через релейный модуль).

Полученные с датчиков данные записываются на карту памяти SD (на рисунке 1 — 8). В дальнейшем они обрабатываются, анализируются и на их основе строятся графики различных показаний. Для этого используется модуль SD-карт DFRobot:

Рисунок 11. Модуль SD-карт

Подключение вентилятора производится таким же способом, как и подключение клапана (через релейный модуль).

Полученные с датчиков данные записываются на карту памяти SD (на рисунке 1 — 8). В дальнейшем они обрабатываются, анализируются и на их основе строятся графики различных показаний. Для этого используется модуль SD-карт DFRobot:

Он содержит разъем для стандартных карт памяти SD, что позволяет добавить накопитель для записи и считывания данных в любой проект. Он имеет следующие характеристики:

  • разъем для стандартных SD карт и через переходник MicroSD карт;
  • содержит фиксатор карты памяти;
  • поддерживает чтение и запись;
  • может использоваться с другими микроконтроллерами;
  • напряжение питания: 5 В;
  • размер: 36 x 30 x 5 мм;
  • вес: 7 гр.

Список использованных источников

Источник статьи: http://meandr.org/archives/25973

Возможности современных автоматизированных систем в теплицах с инструкцией по внедрению

Искусственная среда для выращивания растений способствует круглогодичному снятию урожая. При создании микроклимата частным образом используются готовые проекты умной теплицы и самоделки. Среди систем автоматизации тепличных комплексов лидирует аппаратно-программное обеспечение Arduino, которое позволяет роботизировать домашнее хозяйство даже людям, малосведущим в электронике.

Читайте также:  Обогрев теплицы газовой тепловой пушкой

Необходимость автоматизации теплицы

Жизнедеятельность растений напрямую связана с температурным режимом, влажностью, освещенностью и другими факторами. Малейшие отклонения в окружающей среде негативно сказываются на темпах роста и урожайности. Соблюдение строгих тепличных условий – кропотливый и трудоемкий процесс, который нуждается в постоянном контроле. Умная теплица своими руками сводит к минимуму человеческое участие, освобождает время и позволяет управлять ростом овощных и фруктовых культур на расстоянии.

Решаемые задачи

Автоматизация создания и поддержания необходимых условий окружающей среды подразумевает управление:

  • температурным режимом;
  • поливом и орошением;
  • освещением;
  • подогревом почвы;
  • подкормкой CO₂.

Особая роль отводится мониторингу процессов, автономности и оперативной реакции на малейшие отклонения.

Возможности и оборудование

Считывание данных и изменение состояния окружающей среды производится с помощью датчиков и исполнительных устройств. Главенствующую роль играет контроллер, который сопряжен с системой дистанционного управления. Каждое устройство, входящее в робототехнический комплекс, выполняет определенные функции. Оборудование умной теплицы состоит из систем:

  • поддержания оптимального температурного режима. Для понижения температуры применяются актуаторы. С помощью этих приспособлений регулируется воздухообмен между помещением и внешней средой. Получая сигнал извне, шаговый двигатель, пневматическое или гидравлическое устройство приводит форточку в необходимое положение. Соответствующие сигналы генерируются датчиками температуры и ветра;
  • подогрева почвы. Оптимальная температура в теплице достигается с помощью терморегуляторов, ТЭНов, электрокабеля или других нагревательных приборов, интенсивность работы которых зависит от команд температурных датчиков;
  • освещения. Система включает лампы и датчик освещенности, главной деталью которого является фоторезистор. Формирование управляющего сигнала происходит за счет изменения сопротивления в зависимости от интенсивности светового потока. Помимо осветительных приборов, в регулировании освещенности могут участвовать автоматические шторы;
  • контроля уровня CO₂. Соответствующий датчик связан с вентиляторами, посредством которых помещение освобождается от выработанного растениями кислорода. Подкормка растений двуокисью углерода повышает урожайность на 30%;
  • полива. Автоматизация полива обеспечивается сенсорами влажности (гигрометрами). Из экономических соображений система оборудуется датчиками расхода воды. Простейшие устройства представлены таймерами, которые включают и выключают орошение в заданные промежутки времени.

Расход воды – важный фактор, который напрямую связан с площадью тепличного помещения и особенностями выращивания конкретных растений. При оптимально заданных временных интервалах полива, датчики влажности выполняют функции аварийных сигнализаторов.

Преимущества перед обычной

В таблице №1 представлены преимущества и недостатки обыкновенной и умной теплиц.

Обычная «Умная»
Плюсы Минусы Плюсы Минусы
Независимость от источников энергии Необходимость постоянного присутствия Автоматический и удаленный контроль Зависимость от источников питания
Низкая себестоимость Повышенные трудоатраты Точное соблюдение режимов Затраты на приобретение оборудования
Простота в обслуживании Минимальное участи человека Выход из строя отдельных элементов

Недостатки с автономностью умной теплицы решаются с помощью аккумуляторов, генераторов и емкостей с водою.

Проекты и схемы умных теплиц

Среди почитателей роботизации дома и приусадебного хозяйства, наибольшим уважением пользуется умная теплица на ардуино. Главным компонентом платы-контроллера является процессор, снабженный микросхемой памяти. Используемые для умных теплиц схемы отличаются марками процессоров и функционалом.

Одна из простейших схем-проектов автоматической теплицы на Arduino Uno (мини) изображена на рисунке 1.

Освещенность оценивается фоторезистором. Температурный режим определяется датчиком TMP36. Интенсивность полива регулируется на основании данных с модуля влажности и датчика DHT11.

Расширенный вариант управления микроклиматом в теплице предполагает плата Arduino Mega. Схема-проект интеллектуального «овощевода» представлена на рисунке 2.

Читайте также:  Масло сайкос для террас

Сердцем аппаратной платформы является микроконтроллер ATmega1280. Для считывания/передачи цифровой информации используется 8 выходов. Для обработки аналоговых данных используется 10 портов.

Еще один вариант теплицы с Арудино изображен на рисунке 3.

В качестве универсального таймера-контроллера умной теплицы также можно использовать GyverControl (Рисунок 3).

Интеллектуальное устройство оборудовано семью логическими выходами с напряжением 5В. Для управления серво- и линейными приводами предусмотрены 3 отдельных канала.

Вышеуказанные схемы не являются окончательным решением роботизации теплицы. Появление новых, более совершенных контроллеров, расширяет возможности автоматики и придает ей большую эффективность.

Возможности удаленного контроля и регулирования

Помимо местного управления, умная теплица на Ардуино предоставляет возможность дистанционного контроля оборудования и обмена данными посредством пульта, мобильных гаджетов и персональных компьютеров. В качестве интерфейса может использоваться USB, Bluetooth, Wi-Fi, GSM и интернет. Посредниками в данном процессе служат соответствующие модули и приложения, которые представлены:

  • RemoteXY;
  • Blynk;
  • Virtuino;
  • Bluino Loader;
  • Arduino Bluetooth Control и пр.

Особого внимания заслуживает софт BT Voice Control for Arduino, которое обеспечивает управление тепличным оборудованием с помощью голосовых команд. При синхронизации с «Алисой» это приложение предполагает массу удобств.

Основные критерии выбора систем для автоматизации теплиц

При кажущейся простоте, выбор оборудования для автоматизации тепличного хозяйства затрудняет даже специалистов. Идеальным условием считается подбор автоматики одного производителя. Поскольку данный критерий труднодоступен, перед тем, как автоматизировать теплицу необходимо:

  • определиться с ее площадью и назначением (выращиваемые культуры);
  • высчитать количество датчиков и исполнительных устройств;
  • в зависимости от предыдущего пункта подобрать контроллер или использовать конструктор;
  • решить вопрос с управлением и контролем.

С развитием научно-технического прогресса, готовые проекты умных теплиц быстро устаревают. Поэтому при выборе автоматики для искусственного выращивания овощей и фруктов необходимо опираться на новейшие технологии и оборудование.

Приборы для автоматизации теплиц за 2020 год

Чтобы автоматизировать теплицу, необходимо обзавестись соответствующим оборудованием, примерами которого в 2020 году являются:

  • Контроллер для умной теплицы серии «iТеплица -малый контроллер». Гарантирует комплексный контроль микроклимата в помещении с ограниченной площадью. Обеспечивает поддержание температуры, проветривание, подкормку и полив растений. Предполагает управление вспомогательными механизмами. Рассчитан на длительное хранение данных обо всех изменениях окружающей среды. Оснащен продвинутой системой визуализации SCADA. Комплектуется датчиками влажности, освещенности и программным обеспечением. Цена от 17 тыс. рублей.

  • SMART STANDARD VENT «УМНАЯ ТЕПЛИЦА» — набор для автоматизации теплицы. Обладает богатым функционалом, охватывающим практически все сегменты поддержания заданного микроклимата. Для контроля и обмена данными используются гаджеты, связанные с интернетом. Цена от 47,9 тыс. рублей.

  • «Умница lite» – бюджетный вариант умной теплицы. Помимо блока управления комплектуется картой памяти micro SD, USB-адаптером, датчиками температуры, влажности, освещенности, уровня воды и пр. Цена от 9,9 тыс. рублей.

  • Смарт-теплица на базе контроллера Терраформ. Обеспечивает контроль пяти параметров микроклимата. Комплектуется датчиками температуры, влажности, освещенности, температуры почвы. Предполагает подключение сенсоров CO₂ и pH.

Пошаговая инструкция создания умной теплицы

Наделить «интеллектом» можно практически каждую теплицу, которая отвечает стандартам выращивания овощей, фруктов и цветов в искусственных условиях. Для этого необходимо:

  1. Приобрести готовый комплект автоматики или подобрать оборудование, которые соответствуют созданию необходимого микроклимата и площади помещения.
  2. Оптимально разместить датчики и исполнительные устройства.
  3. Соединить все элементы с контроллером.
  4. Установить необходимое программное обеспечение.
  5. Предусмотреть дистанционное управление.
  6. Организовать автономное питание.

Один из вариантов создания умной теплицы представлен в видео:

Источник статьи: http://datchikidoma.ru/ylichniye-datchiki/ymniye-teplitsy

Оцените статью